Android 消息机制——你确定真的深入了解Handler了?

2,893 阅读17分钟

前言

Android的消息机制主要是指Handler的运行机制,对于大家来说Handler已经是轻车熟路了,可是真的掌握了Handler?本文主要通过几个问题围绕着Handler展开深入并拓展的了解。
看该篇文章可能需要掌握一定的「Activity 启动过程」的理论知识。并且对Handler有一定的了解。

已经有经典的好文介绍Handler,所以墙裂推荐先了解以下2篇文章。
深入源码解析Handler
Gityuan–消息机制Handler

站在巨人的肩膀上会看的更远。大家有兴趣的也可以到Gityuan的博客上多了解了解,全部都是干货。而且他写的东西比较权威,毕竟也是小米系统工程师的骨干成员。

Questions

  1. Looper 死循环为什么不会导致应用卡死,会消耗大量资源吗?
  2. 主线程的消息循环机制是什么(死循环如何处理其它事务)?
  3. ActivityThread 的动力是什么?(ActivityThread执行Looper的线程是什么)
  4. Handler 是如何能够线程切换,发送Message的?(线程间通讯)
  5. 子线程有哪些更新UI的方法。
  6. 子线程中Toast,showDialog,的方法。(和子线程不能更新UI有关吗)
  7. 如何处理Handler 使用不当导致的内存泄露?




1. Looper 死循环为什么不会导致应用卡死?

线程默认没有Looper的,如果需要使用Handler就必须为线程创建Looper。我们经常提到的主线程,也叫UI线程,它就是ActivityThread,ActivityThread被创建时就会初始化Looper,这也是在主线程中默认可以使用Handler的原因。

首先我们看一段代码


        new Thread(new Runnable() {
            @Override
            public void run() {
                Log.e("qdx", "step 0 ");
                Looper.prepare();

                Toast.makeText(MainActivity.this, "run on Thread", Toast.LENGTH_SHORT).show();

                Log.e("qdx", "step 1 ");
                Looper.loop();

                Log.e("qdx", "step 2 ");

            }
        }).start();

我们知道Looper.loop();里面维护了一个死循环方法,所以按照理论,上述代码执行的应该是
step 0 –>step 1
也就是说循环在Looper.prepare();Looper.loop();之间。
这里写图片描述

在子线程中,如果手动为其创建了Looper,那么在所有的事情完成以后应该调用quit方法来终止消息循环,否则这个子线程就会一直处于等待(阻塞)状态,而如果退出Looper以后,这个线程就会立刻(执行所有方法并)终止,因此建议不需要的时候终止Looper。



执行结果也正如我们所说,这时候如果了解了ActivityThread,并且在main方法中我们会看到主线程也是通过Looper方式来维持一个消息循环。

public static void main(String[] args) {

        ``````
        Looper.prepareMainLooper();//创建Looper和MessageQueue对象,用于处理主线程的消息

        ActivityThread thread = new ActivityThread();
        thread.attach(false);//建立Binder通道 (创建新线程)

        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }

        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
        Looper.loop();

        //如果能执行下面方法,说明应用崩溃或者是退出了...
        throw new RuntimeException("Main thread loop unexpectedly exited");
    }

那么回到我们的问题上,这个死循环会不会导致应用卡死,即使不会的话,它会慢慢的消耗越来越多的资源吗?

摘自:Gityuan

对于线程即是一段可执行的代码,当可执行代码执行完成后,线程生命周期便该终止了,线程退出。而对于主线程,我们是绝不希望会被运行一段时间,自己就退出,那么如何保证能一直存活呢?简单做法就是可执行代码是能一直执行下去的,死循环便能保证不会被退出,例如,binder线程也是采用死循环的方法,通过循环方式不同与Binder驱动进行读写操作,当然并非简单地死循环,无消息时会休眠。但这里可能又引发了另一个问题,既然是死循环又如何去处理其他事务呢? 通过创建新线程的方式。真正会卡死主线程的操作是在回调方法onCreate/onStart/onResume等操作时间过长,会导致掉帧,甚至发生ANR,looper.loop本身不会导致应用卡死。

主线程的死循环一直运行是不是特别消耗CPU资源呢? 其实不然,这里就涉及到Linux pipe/epoll机制,简单说就是在主线程的MessageQueue没有消息时,便阻塞在loop的queue.next()中的nativePollOnce()方法里,此时主线程会释放CPU资源进入休眠状态,直到下个消息到达或者有事务发生,通过往pipe管道写端写入数据来唤醒主线程工作。这里采用的epoll机制,是一种IO多路复用机制,可以同时监控多个描述符,当某个描述符就绪(读或写就绪),则立刻通知相应程序进行读或写操作,本质同步I/O,即读写是阻塞的。 所以说,主线程大多数时候都是处于休眠状态,并不会消耗大量CPU资源。
Gityuan–Handler(Native层)




2. 主线程的消息循环机制是什么?

事实上,会在进入死循环之前便创建了新binder线程,在代码ActivityThread.main()中:

public static void main(String[] args) {
        ....

        //创建Looper和MessageQueue对象,用于处理主线程的消息
        Looper.prepareMainLooper();

        //创建ActivityThread对象
        ActivityThread thread = new ActivityThread(); 

        //建立Binder通道 (创建新线程)
        thread.attach(false);

        Looper.loop(); //消息循环运行
        throw new RuntimeException("Main thread loop unexpectedly exited");
    }



Activity的生命周期都是依靠主线程的Looper.loop,当收到不同Message时则采用相应措施:一旦退出消息循环,那么你的程序也就可以退出了。
从消息队列中取消息可能会阻塞,取到消息会做出相应的处理。如果某个消息处理时间过长,就可能会影响UI线程的刷新速率,造成卡顿的现象。

thread.attach(false)方法函数中便会创建一个Binder线程(具体是指ApplicationThread,Binder的服务端,用于接收系统服务AMS发送来的事件),该Binder线程通过Handler将Message发送给主线程。「Activity 启动过程

比如收到msg=H.LAUNCH_ACTIVITY,则调用ActivityThread.handleLaunchActivity()方法,最终会通过反射机制,创建Activity实例,然后再执行Activity.onCreate()等方法;

再比如收到msg=H.PAUSE_ACTIVITY,则调用ActivityThread.handlePauseActivity()方法,最终会执行Activity.onPause()等方法。

主线程的消息又是哪来的呢?当然是App进程中的其他线程通过Handler发送给主线程




system_server进程

system_server进程是系统进程,java framework框架的核心载体,里面运行了大量的系统服务,比如这里提供ApplicationThreadProxy(简称ATP),ActivityManagerService(简称AMS),这个两个服务都运行在system_server进程的不同线程中,由于ATP和AMS都是基于IBinder接口,都是binder线程,binder线程的创建与销毁都是由binder驱动来决定的。

App进程

App进程则是我们常说的应用程序,主线程主要负责Activity/Service等组件的生命周期以及UI相关操作都运行在这个线程; 另外,每个App进程中至少会有两个binder线程 ApplicationThread(简称AT)和ActivityManagerProxy(简称AMP),除了图中画的线程,其中还有很多线程

Binder

Binder用于不同进程之间通信,由一个进程的Binder客户端向另一个进程的服务端发送事务,比如图中线程2向线程4发送事务;而handler用于同一个进程中不同线程的通信,比如图中线程4向主线程发送消息。

这里写图片描述

结合图说说Activity生命周期,比如暂停Activity,流程如下:

  1. 线程1的AMS中调用线程2的ATP;(由于同一个进程的线程间资源共享,可以相互直接调用,但需要注意多线程并发问题)
  2. 线程2通过binder传输到App进程的线程4;
  3. 线程4通过handler消息机制,将暂停Activity的消息发送给主线程;
  4. 主线程在looper.loop()中循环遍历消息,当收到暂停Activity的消息时,便将消息分发给
    ActivityThread.H.handleMessage()方法,再经过方法的调用,
    最后便会调用到Activity.onPause(),当onPause()处理完后,继续循环loop下去。



补充:

ActivityThread的main方法主要就是做消息循环,一旦退出消息循环,那么你的程序也就可以退出了。

从消息队列中取消息可能会阻塞,取到消息会做出相应的处理。如果某个消息处理时间过长,就可能会影响UI线程的刷新速率,造成卡顿的现象。


最后通过《Android开发艺术探索》的一段话总结 :

ActivityThread通过ApplicationThread和AMS进行进程间通讯,AMS以进程间通信的方式完成ActivityThread的请求后会回调ApplicationThread中的Binder方法,然后ApplicationThread会向H发送消息,H收到消息后会将ApplicationThread中的逻辑切换到ActivityThread中去执行,即切换到主线程中去执行,这个过程就是。 主线程的消息循环模型

另外,ActivityThread实际上并非线程,不像HandlerThread类,ActivityThread并没有真正继承Thread类

那么问题又来了,既然ActivityThread不是一个线程,那么ActivityThread中Looper绑定的是哪个Thread,也可以说它的动力是什么?(深入源码解析Handler结尾图中所说的“动力”。)




3. ActivityThread 的动力是什么?

进程
每个app运行时前首先创建一个进程,该进程是由Zygote fork出来的,用于承载App上运行的各种Activity/Service等组件。进程对于上层应用来说是完全透明的,这也是google有意为之,让App程序都是运行在Android Runtime。大多数情况一个App就运行在一个进程中,除非在AndroidManifest.xml中配置Android:process属性,或通过native代码fork进程。


线程
线程对应用来说非常常见,比如每次new Thread().start都会创建一个新的线程。该线程与App所在进程之间资源共享,从Linux角度来说 进程与线程除了是否共享资源外,并没有本质的区别,都是一个task_struct结构体,在CPU看来进程或线程无非就是一段可执行的代码,CPU采用CFS调度算法,保证每个task都尽可能公平的享有CPU时间片。

其实承载ActivityThread的主线程就是由Zygote fork而创建的进程。




4. Handler 是如何能够线程切换

其实看完上面我们大致也清楚, 线程间是共享资源的。所以Handler处理不同线程问题就只要注意异步情况即可。


这里再引申出Handler的一些小知识点。
Handler创建的时候会采用当前线程的Looper来构造消息循环系统,Looper在哪个线程创建,就跟哪个线程绑定,并且 Handler是在他关联的Looper对应的线程中处理消息的。(敲黑板)

那么Handler内部如何获取到当前线程的Looper呢—– ThreadLocal。ThreadLocal可以在不同的线程中互不干扰的存储并提供数据,通过ThreadLocal可以轻松获取每个线程的Looper。当然需要注意的是 ①线程是默认没有Looper的,如果需要使用Handler,就必须为线程创建Looper。我们经常提到的主线程,也叫UI线程,它就是ActivityThread, ②ActivityThread被创建时就会初始化Looper,这也是在主线程中默认可以使用Handler的原因。



系统为什么不允许在子线程中访问UI?(摘自《Android开发艺术探索》)
这是因为Android的UI控件不是线程安全的,如果在多线程中并发访问可能会导致UI控件处于不可预期的状态,那么为什么系统不对UI控件的访问加上锁机制呢?缺点有两个:
①首先加上锁机制会让UI访问的逻辑变得复杂
②锁机制会降低UI访问的效率,因为锁机制会阻塞某些线程的执行。
所以最简单且高效的方法就是采用单线程模型来处理UI操作。



那么问题又来了, 子线程一定不能更新UI?
鸿洋曾曰(yue)过爱哥:数百头母驴为何半夜惨叫?小卖部安全套为何屡遭黑手?女生宿舍内裤为何频频失窃?连环强奸母猪案,究竟是何人所为?老尼姑的门夜夜被敲,究竟是人是鬼?数百只小母狗意外身亡的背后又隐藏着什么?这一切的背后, 是人性的扭曲还是道德的沦丧?是性的爆发还是饥渴的无奈?敬请关注今晚焦点访谈:爱哥那些不得不说的故事

看到这里,又留下两个知识点等待下篇详解:View的绘制机制与Android Window内部机制。




5. 子线程有哪些更新UI的方法。

  1. 主线程中定义Handler,子线程通过mHandler发送消息,主线程Handler的handleMessage更新UI。
  2. 用Activity对象的runOnUiThread方法。
  3. 创建Handler,传入getMainLooper
  4. View.post(Runnable r) 。




runOnUiThread

第一种咱们就不分析了,我们来看看第二种比较常用的写法。

先重新温习一下上面说的

Looper在哪个线程创建,就跟哪个线程绑定,并且 Handler是在他关联的Looper对应的线程中处理消息的。(敲黑板)

        new Thread(new Runnable() {
            @Override
            public void run() {

                runOnUiThread(new Runnable() {
                    @Override
                    public void run() {
                        //DO UI method

                    }
                });

            }
        }).start();
//Activity


    final Handler mHandler = new Handler();

    public final void runOnUiThread(Runnable action) {
        if (Thread.currentThread() != mUiThread) {
            mHandler.post(action);//子线程(非UI线程)
        } else {
            action.run();
        }
    }

进入Activity类里面,可以看到如果是在子线程中,通过mHandler发送的更新UI消息。
而这个Handler是在Activity中创建的,也就是说在主线程中创建,所以便和我们在主线程中使用Handler更新UI没有差别。
因为这个Looper,就是ActivityThread中创建的Looper(Looper.prepareMainLooper())。




创建Handler,传入getMainLooper

那么同理,我们在子线程中,是否也可以创建一个Handler,并获取MainLooper,从而在子线程中更新UI呢?
首先我们看到,在Looper类中有静态对象sMainLooper,并且这个sMainLooper就是在ActivityThread中创建的MainLooper

    private static Looper sMainLooper;  // guarded by Looper.class

    public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }



所以不用多说,我们就可以通过这个sMainLooper来进行更新UI操作。

        new Thread(new Runnable() {
            @Override
            public void run() {

                Log.e("qdx", "step 1 "+Thread.currentThread().getName());

                Handler handler=new Handler(getMainLooper());
                handler.post(new Runnable() {
                    @Override
                    public void run() {

                        //Do Ui method
                        Log.e("qdx", "step 2 "+Thread.currentThread().getName());
                    }
                });

            }
        }).start();

这里写图片描述




View.post(Runnable r)

老样子,我们点入源码

//View

    /**
     * <p>Causes the Runnable to be added to the message queue.
     * The runnable will be run on the user interface thread.</p>
     *
     * @param action The Runnable that will be executed.
     *
     * @return Returns true if the Runnable was successfully placed in to the
     *         message queue.  Returns false on failure, usually because the
     *         looper processing the message queue is exiting.
     *
     */
    public boolean post(Runnable action) {
        final AttachInfo attachInfo = mAttachInfo;
        if (attachInfo != null) {
            return attachInfo.mHandler.post(action); //一般情况走这里
        }

        // Postpone the runnable until we know on which thread it needs to run.
        // Assume that the runnable will be successfully placed after attach.
        getRunQueue().post(action);
        return true;
    }


        /**
         * A Handler supplied by a view's {@link android.view.ViewRootImpl}. This
         * handler can be used to pump events in the UI events queue.
         */
        final Handler mHandler;

居然也是Handler从中作祟,根据Handler的注释,也可以清楚该Handler可以处理UI事件,也就是说它的Looper也是主线程的sMainLooper。这就是说我们常用的更新UI都是通过Handler实现的。

另外更新UI 也可以通过AsyncTask来实现,难道这个AsyncTask的线程切换也是通过 Handler 吗?
没错,也是通过Handler……

Handler实在是这里写图片描述




6.子线程中Toast,showDialog,的方法。

可能有些人看到这个问题,就会想: 子线程本来就不可以更新UI的啊
而且上面也说了更新UI的方法
这里写图片描述



兄台且慢,且听我把话写完

        new Thread(new Runnable() {
            @Override
            public void run() {

                Toast.makeText(MainActivity.this, "run on thread", Toast.LENGTH_SHORT).show();//崩溃无疑

            }
        }).start();

这里写图片描述



看到这个崩溃日志,是否有些疑惑,因为一般如果子线程不能更新UI控件是会报如下错误的(子线程不能更新UI)


这里写图片描述



所以子线程不能更新Toast的原因就和Handler有关了,据我们了解,每一个Handler都要有对应的Looper对象,那么。
满足你。

        new Thread(new Runnable() {
            @Override
            public void run() {

                Looper.prepare();
                Toast.makeText(MainActivity.this, "run on thread", Toast.LENGTH_SHORT).show();
                Looper.loop();

            }
        }).start();

这样便能在子线程中Toast,不是说子线程…?
老样子,我们追根到底看一下Toast内部执行方式。

//Toast


    /**
     * Show the view for the specified duration.
     */
    public void show() {
        ``````

        INotificationManager service = getService();//从SMgr中获取名为notification的服务
        String pkg = mContext.getOpPackageName();
        TN tn = mTN;
        tn.mNextView = mNextView;

        try {
            service.enqueueToast(pkg, tn, mDuration);//enqueue? 难不成和Handler的队列有关?
        } catch (RemoteException e) {
            // Empty
        }
    }

show方法中,我们看到Toast的show方法和普通UI 控件不太一样,并且也是通过Binder进程间通讯方法执行Toast绘制。这其中的过程就不在多讨论了,有兴趣的可以在NotificationManagerService类中分析。

现在把目光放在TN 这个类上(难道越重要的类命名就越简洁,如H类),通过TN 类,可以了解到它是Binder的本地类。在Toast的show方法中,将这个TN对象传给NotificationManagerService就是为了通讯!并且我们也在TN中发现了它的show方法。

    private static class TN extends ITransientNotification.Stub {//Binder服务端的具体实现类

        /**
         * schedule handleShow into the right thread
         */
        @Override
        public void show(IBinder windowToken) {
            mHandler.obtainMessage(0, windowToken).sendToTarget();
        }


        final Handler mHandler = new Handler() {
            @Override
            public void handleMessage(Message msg) {
                IBinder token = (IBinder) msg.obj;
                handleShow(token);
            }
        };

    }

看完上面代码,就知道子线程中Toast报错的原因,因为在TN中使用Handler,所以需要创建Looper对象。
那么既然用Handler来发送消息,就可以在handleMessage中找到更新Toast的方法。
handleMessage看到由handleShow处理。

//Toast的TN类


        public void handleShow(IBinder windowToken) {

                ``````
                mWM = (WindowManager)context.getSystemService(Context.WINDOW_SERVICE);

                mParams.x = mX;
                mParams.y = mY;
                mParams.verticalMargin = mVerticalMargin;
                mParams.horizontalMargin = mHorizontalMargin;
                mParams.packageName = packageName;
                mParams.hideTimeoutMilliseconds = mDuration ==
                    Toast.LENGTH_LONG ? LONG_DURATION_TIMEOUT : SHORT_DURATION_TIMEOUT;
                mParams.token = windowToken;
                if (mView.getParent() != null) {
                    mWM.removeView(mView);
                }
                mWM.addView(mView, mParams);//使用WindowManager的addView方法
                trySendAccessibilityEvent();
            }
        }



看到这里就可以总结一下:

Toast本质是通过window显示和绘制的(操作的是window),而主线程不能更新UI 是因为ViewRootImplcheckThread方法在Activity维护的View树的行为。
ToastTN类使用Handler是为了用队列和时间控制排队显示Toast,所以为了防止在创建TN时抛出异常,需要在子线程中使用Looper.prepare();Looper.loop();(但是不建议这么做,因为它会使线程无法执行结束,导致内存泄露)

Dialog亦是如此。同时我们又多了一个知识点要去研究: Android 中Window是什么,它内部有什么机制?




7. 如何处理Handler 使用不当导致的内存泄露?

首先上文在子线程中为了节目效果,使用如下方式创建Looper

                Looper.prepare();
                ``````
                Looper.loop();

实际上这是非常危险的一种做法

在子线程中,如果手动为其创建Looper,那么在所有的事情完成以后应该调用quit方法来终止消息循环,否则这个子线程就会一直处于等待的状态,而如果退出Looper以后,这个线程就会立刻终止,因此建议不需要的时候终止Looper。(【 Looper.myLooper().quit(); 】)



那么,如果在Handler的handleMessage方法中(或者是run方法)处理消息,如果这个是一个延时消息,会一直保存在主线程的消息队列里,并且会影响系统对Activity的回收,造成内存泄露。

具体可以参考Handler内存泄漏分析及解决

总结一下,解决Handler内存泄露主要2点

  1. 有延时消息,要在Activity销毁的时候移除Messages
  2. 匿名内部类导致的泄露改为匿名静态内部类,并且对上下文或者Activity使用弱引用。




总结

这里写图片描述
想不到Handler居然可以腾出这么多浪花,与此同时感谢前辈的摸索。

同时我们仍需要研究
Java GC机制和内存泄露
Android 中Window是什么,它内部有什么机制?
Android View的绘制机制



参考
深入源码解析Handler
Gityuan–消息机制Handler