使用 Kubeadm 安装最新版 Kubernetes 1.12

1,874 阅读20分钟
原文链接: mp.weixin.qq.com

kubeadm是Kubernetes官方提供的用于快速安装Kubernetes集群的工具,伴随Kubernetes每个版本的发布都会同步更新,kubeadm会对集群配置方面的一些实践做调整,通过实验kubeadm可以学习到Kubernetes官方在集群配置上一些新的最佳实践。

在Kubernetes的文档Creating a single master cluster with kubeadm中已经给出了目前kubeadm的主要特性已经处于beta状态了,在2018年将进入GA状态,说明kubeadm离可以在生产环境中使用的距离越来越近了。

当然我们线上稳定运行的Kubernetes集群是使用ansible以二进制形式的部署的高可用集群,这里体验Kubernetes 1.12中的kubeadm是为了跟随官方对集群初始化和配置方面的最佳实践,进一步完善我们的ansible部署脚本。

1.准备

1.1系统配置

在安装之前,需要先做如下准备。两台CentOS 7.4主机如下:

  1. cat /etc/hosts

  2. 192.168.61.11 node1

  3. 192.168.61.12 node2

如果各个主机启用了防火墙,需要开放Kubernetes各个组件所需要的端口,可以查看Installing kubeadm中的”Check required ports”一节。 这里简单起见在各节点禁用防火墙:

  1. systemctl stop firewalld

  2. systemctl disable firewalld

禁用SELINUX:

  1. setenforce 0

  1. vi /etc/selinux/config

  2. SELINUX=disabled

创建/etc/sysctl.d/k8s.conf文件,添加如下内容:

  1. net.bridge.bridge-nf-call-ip6tables = 1

  2. net.bridge.bridge-nf-call-iptables = 1

  3. net.ipv4.ip_forward = 1

执行命令使修改生效。

  1. modprobe br_netfilter

  2. sysctl -p /etc/sysctl.d/k8s.conf

1.2安装Docker

Kubernetes从1.6开始使用CRI(Container Runtime Interface)容器运行时接口。默认的容器运行时仍然是Docker,使用的是kubelet中内置dockershim CRI实现。

安装docker的yum源:

  1. yum install -y yum-utils device-mapper-persistent-data lvm2

  2. yum-config-manager \

  3.    --add-repo \

  4.    https://download.docker.com/linux/centos/docker-ce.repo

查看最新的Docker版本:

  1. yum list docker-ce.x86_64  --showduplicates |sort -r

  2. docker-ce.x86_64            18.06.1.ce-3.el7                    docker-ce-stable

  3. docker-ce.x86_64            18.06.0.ce-3.el7                    docker-ce-stable

  4. docker-ce.x86_64            18.03.1.ce-1.el7.centos             docker-ce-stable

  5. docker-ce.x86_64            18.03.0.ce-1.el7.centos             docker-ce-stable

  6. docker-ce.x86_64            17.12.1.ce-1.el7.centos             docker-ce-stable

  7. docker-ce.x86_64            17.12.0.ce-1.el7.centos             docker-ce-stable

  8. docker-ce.x86_64            17.09.1.ce-1.el7.centos             docker-ce-stable

  9. docker-ce.x86_64            17.09.0.ce-1.el7.centos             docker-ce-stable

  10. docker-ce.x86_64            17.06.2.ce-1.el7.centos             docker-ce-stable

  11. docker-ce.x86_64            17.06.1.ce-1.el7.centos             docker-ce-stable

  12. docker-ce.x86_64            17.06.0.ce-1.el7.centos             docker-ce-stable

  13. docker-ce.x86_64            17.03.3.ce-1.el7                    docker-ce-stable

  14. docker-ce.x86_64            17.03.2.ce-1.el7.centos             docker-ce-stable

  15. docker-ce.x86_64            17.03.1.ce-1.el7.centos             docker-ce-stable

  16. docker-ce.x86_64            17.03.0.ce-1.el7.centos             docker-ce-stable

Kubernetes 1.12已经针对Docker的1.11.1, 1.12.1, 1.13.1, 17.03, 17.06, 17.09, 18.06等版本做了验证,需要注意Kubernetes 1.12最低支持的Docker版本是1.11.1。 我们这里在各节点安装docker的18.06.1版本。

  1. yum makecache fast

  2. yum install -y --setopt=obsoletes=0 \

  3.  docker-ce-18.06.1.ce-3.el7

  4. systemctl start docker

  5. systemctl enable docker

确认一下iptables filter表中FOWARD链的默认策略(pllicy)为ACCEPT。

  1. iptables -nvL

  2. Chain INPUT (policy ACCEPT 263 packets, 19209 bytes)

  3. pkts bytes target     prot opt in     out     source               destination

  4. Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)

  5. pkts bytes target     prot opt in     out     source               destination

  6.    0     0 DOCKER-USER  all  --  *      *       0.0.0.0/0            0.0.0.0/0

  7.    0     0 DOCKER-ISOLATION-STAGE-1  all  --  *      *       0.0.0.0/0            0.0.0.0/0

  8.    0     0 ACCEPT     all  --  *      docker0  0.0.0.0/0            0.0.0.0/0            ctstate RELATED,ESTABLISHED

  9.    0     0 DOCKER     all  --  *      docker0  0.0.0.0/0            0.0.0.0/0

  10.    0     0 ACCEPT     all  --  docker0 !docker0  0.0.0.0/0            0.0.0.0/0

  11.    0     0 ACCEPT     all  --  docker0 docker0  0.0.0.0/0            0.0.0.0/0

Docker从1.13版本开始调整了默认的防火墙规则,禁用了iptables filter表中FOWARD链,这样会引起Kubernetes集群中跨Node的Pod无法通信。但这里通过安装docker 1806,发现默认策略又改回了ACCEPT,这个不知道是从哪个版本改回的,因为我们线上版本使用的1706还是需要手动调整这个策略的。

2.使用kubeadm部署Kubernetes

2.1 安装kubeadm和kubelet

下面在各节点安装kubeadm和kubelet:

  1. cat <<EOF > /etc/yum.repos.d/kubernetes.repo

  2. [kubernetes]

  3. name=Kubernetes

  4. baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64

  5. enabled=1

  6. gpgcheck=1

  7. repo_gpgcheck=1

  8. gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg

  9.        https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg

  10. EOF

测试地址https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64是否可用,如果不可用需要科学上网。

  1. curl https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64

  1. yum makecache fast

  2. yum install -y kubelet kubeadm kubectl

  3. ...

  4. Installed:

  5.  kubeadm.x86_64 0:1.12.0-0    kubectl.x86_64 0:1.12.0-0     kubelet.x86_64 0:1.12.0-0

  6. Dependency Installed:

  7.  cri-tools.x86_64 0:1.11.1-0  kubernetes-cni.x86_64 0:0.6.0-0  socat.x86_64 0:1.7.3.2-2.el7

从安装结果可以看出还安装了cri-tools, kubernetes-cni, socat三个依赖:

官方从Kubernetes 1.9开始就将cni依赖升级到了0.6.0版本,在当前1.12中仍然是这个版本

socat是kubelet的依赖

cri-tools是CRI(Container Runtime Interface)容器运行时接口的命令行工具

运行kubelet --help可以看到原来kubelet的绝大多数命令行flag参数都被DEPRECATED了,如:

  1. ......

  2. --address 0.0.0.0   The IP address for the Kubelet to serve on (set to 0.0.0.0 for all IPv4 interfaces and `::` for all IPv6 interfaces) (default 0.0.0.0) (DEPRECATED: This parameter should be set via the config file specified by the Kubelet's --config flag. See https://kubernetes.io/docs/tasks/administer-cluster/kubelet-config-file/ for more information.)

  3. ......

而官方推荐我们使用--config指定配置文件,并在配置文件中指定原来这些flag所配置的内容。具体内容可以查看这里Set Kubelet parameters via a config file。这也是Kubernetes为了支持动态Kubelet配置(Dynamic Kubelet Configuration)才这么做的,参考Reconfigure a Node’s Kubelet in a Live Cluster。

kubelet的配置文件必须是json或yaml格式,具体可查看这里。

Kubernetes 1.8开始要求关闭系统的Swap,如果不关闭,默认配置下kubelet将无法启动。

关闭系统的Swap方法如下:

swapoff -a 修改 /etc/fstab 文件,注释掉 SWAP 的自动挂载,使用free -m确认swap已经关闭。 swappiness参数调整,修改/etc/sysctl.d/k8s.conf添加下面一行:

vm.swappiness=0 执行sysctl -p /etc/sysctl.d/k8s.conf使修改生效。

因为这里本次用于测试两台主机上还运行其他服务,关闭swap可能会对其他服务产生影响,所以这里修改kubelet的配置去掉这个限制。 之前的Kubernetes版本我们都是通过kubelet的启动参数--fail-swap-on=false去掉这个限制的。前面已经分析了Kubernetes不再推荐使用启动参数,而推荐使用配置文件。 所以这里我们改成配置文件配置的形式。

查看/etc/systemd/system/kubelet.service.d/10-kubeadm.conf,看到了下面的内容:

  1. # Note: This dropin only works with kubeadm and kubelet v1.11+

  2. [Service]

  3. Environment="KUBELET_KUBECONFIG_ARGS=--bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf --kubeconfig=/etc/kubernetes/kubelet.conf"

  4. Environment="KUBELET_CONFIG_ARGS=--config=/var/lib/kubelet/config.yaml"

  5. # This is a file that "kubeadm init" and "kubeadm join" generates at runtime, populating the KUBELET_KUBEADM_ARGS variable dynamically

  6. EnvironmentFile=-/var/lib/kubelet/kubeadm-flags.env

  7. # This is a file that the user can use for overrides of the kubelet args as a last resort. Preferably, the user should use

  8. # the .NodeRegistration.KubeletExtraArgs object in the configuration files instead. KUBELET_EXTRA_ARGS should be sourced from this file.

  9. EnvironmentFile=-/etc/sysconfig/kubelet

  10. ExecStart=

  11. ExecStart=/usr/bin/kubelet $KUBELET_KUBECONFIG_ARGS $KUBELET_CONFIG_ARGS $KUBELET_KUBEADM_ARGS $KUBELET_EXTRA_ARGS

上面显示kubeadm部署的kubelet的配置文件--config=/var/lib/kubelet/config.yaml,实际去查看/var/lib/kubelet和这个config.yaml的配置文件都没有被创建。 可以猜想肯定是运行kubeadm初始化集群时会自动生成这个配置文件,而如果我们不关闭Swap的话,第一次初始化集群肯定会失败的。

所以还是老老实实的回到使用kubelet的启动参数--fail-swap-on=false去掉必须关闭Swap的限制。 修改/etc/sysconfig/kubelet,加入:

  1. KUBELET_EXTRA_ARGS=--fail-swap-on=false

2.2 使用kubeadm init初始化集群

在各节点开机启动kubelet服务:

  1. systemctl enable kubelet.service

接下来使用kubeadm初始化集群,选择node1作为Master Node,在node1上执行下面的命令:

  1. kubeadm init \

  2.  --kubernetes-version=v1.12.0 \

  3.  --pod-network-cidr=10.244.0.0/16 \

  4.  --apiserver-advertise-address=192.168.61.11

因为我们选择flannel作为Pod网络插件,所以上面的命令指定–pod-network-cidr=10.244.0.0/16。 执行时报了下面的错误:

  1. [init] using Kubernetes version: v1.12.0

  2. [preflight] running pre-flight checks

  3. [preflight] Some fatal errors occurred:

  4.        [ERROR Swap]: running with swap on is not supported. Please disable swap

  5. [preflight] If you know what you are doing, you can make a check non-fatal with `--ignore-preflight-errors=...`

有一个错误信息是running with swap on is not supported. Please disable swap。因为我们决定配置failSwapOn: false,所以重新添加–ignore-preflight-errors=Swap参数忽略这个错误,重新运行。

  1. kubeadm init \

  2.   --kubernetes-version=v1.12.0 \

  3.   --pod-network-cidr=10.244.0.0/16 \

  4.   --apiserver-advertise-address=192.168.61.11 \

  5.   --ignore-preflight-errors=Swap

  6. [init] using Kubernetes version: v1.12.0

  7. [preflight] running pre-flight checks

  8.        [WARNING Swap]: running with swap on is not supported. Please disable swap

  9. [preflight/images] Pulling images required for setting up a Kubernetes cluster

  10. [preflight/images] This might take a minute or two, depending on the speed of your internet connection

  11. [preflight/images] You can also perform this action in beforehand using 'kubeadm config images pull'

  12. [kubelet] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"

  13. [kubelet] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"

  14. [preflight] Activating the kubelet service

  15. [certificates] Generated etcd/ca certificate and key.

  16. [certificates] Generated etcd/peer certificate and key.

  17. [certificates] etcd/peer serving cert is signed for DNS names [node1 localhost] and IPs [192.168.61.11 127.0.0.1 ::1]

  18. [certificates] Generated apiserver-etcd-client certificate and key.

  19. [certificates] Generated etcd/server certificate and key.

  20. [certificates] etcd/server serving cert is signed for DNS names [node1 localhost] and IPs [127.0.0.1 ::1]

  21. [certificates] Generated etcd/healthcheck-client certificate and key.

  22. [certificates] Generated ca certificate and key.

  23. [certificates] Generated apiserver certificate and key.

  24. [certificates] apiserver serving cert is signed for DNS names [node1 kubernetes kubernetes.default kubernetes.default.svc kubernetes.default.svc.cluster.local] and IPs [10.96.0.1 192.168.61.11]

  25. [certificates] Generated apiserver-kubelet-client certificate and key.

  26. [certificates] Generated front-proxy-ca certificate and key.

  27. [certificates] Generated front-proxy-client certificate and key.

  28. [certificates] valid certificates and keys now exist in "/etc/kubernetes/pki"

  29. [certificates] Generated sa key and public key.

  30. [kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/admin.conf"

  31. [kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/kubelet.conf"

  32. [kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/controller-manager.conf"

  33. [kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/scheduler.conf"

  34. [controlplane] wrote Static Pod manifest for component kube-apiserver to "/etc/kubernetes/manifests/kube-apiserver.yaml"

  35. [controlplane] wrote Static Pod manifest for component kube-controller-manager to "/etc/kubernetes/manifests/kube-controller-manager.yaml"

  36. [controlplane] wrote Static Pod manifest for component kube-scheduler to "/etc/kubernetes/manifests/kube-scheduler.yaml"

  37. [etcd] Wrote Static Pod manifest for a local etcd instance to "/etc/kubernetes/manifests/etcd.yaml"

  38. [init] waiting for the kubelet to boot up the control plane as Static Pods from directory "/etc/kubernetes/manifests"

  39. [init] this might take a minute or longer if the control plane images have to be pulled

  40. [apiclient] All control plane components are healthy after 26.503672 seconds

  41. [uploadconfig] storing the configuration used in ConfigMap "kubeadm-config" in the "kube-system" Namespace

  42. [kubelet] Creating a ConfigMap "kubelet-config-1.12" in namespace kube-system with the configuration for the kubelets in the cluster

  43. [markmaster] Marking the node node1 as master by adding the label "node-role.kubernetes.io/master=''"

  44. [markmaster] Marking the node node1 as master by adding the taints [node-role.kubernetes.io/master:NoSchedule]

  45. [patchnode] Uploading the CRI Socket information "/var/run/dockershim.sock" to the Node API object "node1" as an annotation

  46. [bootstraptoken] using token: zalj3i.q831ehufqb98d1ic

  47. [bootstraptoken] configured RBAC rules to allow Node Bootstrap tokens to post CSRs in order for nodes to get long term certificate credentials

  48. [bootstraptoken] configured RBAC rules to allow the csrapprover controller automatically approve CSRs from a Node Bootstrap Token

  49. [bootstraptoken] configured RBAC rules to allow certificate rotation for all node client certificates in the cluster

  50. [bootstraptoken] creating the "cluster-info" ConfigMap in the "kube-public" namespace

  51. [addons] Applied essential addon: CoreDNS

  52. [addons] Applied essential addon: kube-proxy

  53. Your Kubernetes master has initialized successfully!

  54. To start using your cluster, you need to run the following as a regular user:

  55.  mkdir -p $HOME/.kube

  56.  sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

  57.  sudo chown $(id -u):$(id -g) $HOME/.kube/config

  58. You should now deploy a pod network to the cluster.

  59. Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:

  60.  https://kubernetes.io/docs/concepts/cluster-administration/addons/

  61. You can now join any number of machines by running the following on each node

  62. as root:

  63.  kubeadm join 192.168.61.11:6443 --token zalj3i.q831ehufqb98d1ic --discovery-token-ca-cert-hash sha256:6ee48b19ba61a2dda77f6b60687c5fd11072ab898cfdfef32a68821d1dbe8efa

上面记录了完成的初始化输出的内容,根据输出的内容基本上可以看出手动初始化安装一个Kubernetes集群所需要的关键步骤。

其中有以下关键内容:

[kubelet] 生成kubelet的配置文件”/var/lib/kubelet/config.yaml” [certificates]生成相关的各种证书 [kubeconfig]生成相关的kubeconfig文件 [bootstraptoken]生成token记录下来,后边使用kubeadm join往集群中添加节点时会用到 下面的命令是配置常规用户如何使用kubectl访问集群: mkdir -p $HOME/.kube sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config sudo chown $(id -u):$(id -g) $HOME/.kube/config 最后给出了将节点加入集群的命令kubeadm join 192.168.61.11:6443 --token zalj3i.q831ehufqb98d1ic --discovery-token-ca-cert-hash sha256:6ee48b19ba61a2dda77f6b60687c5fd11072ab898cfdfef32a68821d1dbe8efa

查看一下集群状态:

  1. kubectl get cs

  2. NAME                 STATUS    MESSAGE              ERROR

  3. controller-manager   Healthy   ok

  4. scheduler            Healthy   ok

  5. etcd-0               Healthy   {"health": "true"}

确认个组件都处于healthy状态。

集群初始化如果遇到问题,可以使用下面的命令进行清理:

  1. kubeadm reset

  2. ifconfig cni0 down

  3. ip link delete cni0

  4. ifconfig flannel.1 down

  5. ip link delete flannel.1

  6. rm -rf /var/lib/cni/

2.3 安装Pod Network

接下来安装flannel network add-on:

  1. mkdir -p ~/k8s/

  2. cd ~/k8s

  3. wget https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml

  4. kubectl apply -f  kube-flannel.yml

  5. clusterrole.rbac.authorization.k8s.io/flannel created

  6. clusterrolebinding.rbac.authorization.k8s.io/flannel created

  7. serviceaccount/flannel created

  8. configmap/kube-flannel-cfg created

  9. daemonset.extensions/kube-flannel-ds-amd64 created

  10. daemonset.extensions/kube-flannel-ds-arm64 created

  11. daemonset.extensions/kube-flannel-ds-arm created

  12. daemonset.extensions/kube-flannel-ds-ppc64le created

  13. daemonset.extensions/kube-flannel-ds-s390x created

这里注意kube-flannel.yml这个文件里的flannel的镜像是0.10.0,quay.io/coreos/flannel:v0.10.0-amd64

如果Node有多个网卡的话,参考flannel issues 39701,目前需要在kube-flannel.yml中使用--iface参数指定集群主机内网网卡的名称,否则可能会出现dns无法解析。需要将kube-flannel.yml下载到本地,flanneld启动参数加上--iface=

  1. ......

  2. containers:

  3.      - name: kube-flannel

  4.        image: quay.io/coreos/flannel:v0.10.0-amd64

  5.        command:

  6.        - /opt/bin/flanneld

  7.        args:

  8.        - --ip-masq

  9.        - --kube-subnet-mgr

  10.        - --iface=eth1

  11. ......

本次按上面的步骤部署flannel,发现没有效果,查看一下集群中的daemonset:

  1. kubectl get ds -l app=flannel -n kube-system

  2. NAME                      DESIRED   CURRENT   READY   UP-TO-DATE   AVAILABLE   NODE SELECTOR                     AGE

  3. kube-flannel-ds-amd64     0         0         0       0            0           beta.kubernetes.i/oarch=amd64     17s

  4. kube-flannel-ds-arm       0         0         0       0            0           beta.kubernetes.io/arch=arm       17s

  5. kube-flannel-ds-arm64     0         0         0       0            0           beta.kubernetes.io/arch=arm64     17s

  6. kube-flannel-ds-ppc64le   0         0         0       0            0           beta.kubernetes.io/arch=ppc64le   17s

  7. kube-flannel-ds-s390x     0         0         0       0            0           beta.kubernetes.io/arch=s390x     17s

结合kube-flannel.yml,fannel官方的部署yaml文件是要在集群中创建5个针对不同平台的DaemonSet,通过Node的Label beta.kubernetes.i/oarch,在对应不同平台的Node节点上启动flannel的容器。当前的node1节点是beta.kubernetes.i/oarch=amd64,因此对于kube-flannel-ds-amd64这个DaemonSet来说,它的DESIRED数量应该为1才对。查看kube-flannel.yml中关于kube-flannel-ds-amd64的内容:

                                                        
  1. spec :

  2.   template:

  3.    metadata :

  4.      labels :

  5.        tier : node

  6.        app : flannel

  7.    spec :

  8.      hostNetwork : true

  9.      nodeSelector :

  10.        beta .kubernetes .io /arch : amd64

  11.      tolerations :

  12.       - key : node -role .kubernetes .io /master

  13.         operator: Exists

  14.        effect : NoSchedule

kube-flannel.yml中已经为kube-flannel-ds-amd64正确设置了调度相关的nodeSelector和tolerations,即将这个DaemonSet的Pod调度到Label为beta.kubernetes.io/arch: amd64,同时容忍node-role.kubernetes.io/master:NoSchedule污点的节点上。这个按照以前的部署经验来说当前的主节点node1应该是多满足的,可是现在是这样的吗?我们查看一下node1节点的基本信息:

                                                            
  1. kubectl describe node node1

  2. Name :               node1

  3. Roles :              master

  4. Labels :             beta .kubernetes .io /arch =amd64

  5.                    beta .kubernetes .io /os =linux

  6.                    kubernetes .io /hostname =node1

  7.                    node -role .kubernetes .io /master =

  8. Annotations :        kubeadm .alpha .kubernetes .io /cri -socket : /var/run /dockershim .sock

  9.                    node .alpha .kubernetes .io /ttl : 0

  10.                    volumes .kubernetes .io /controller -managed -attach -detach : true

  11. CreationTimestamp :   Wed, 03 Oct 2018 09 :03 :04 + 0800

  12. Taints :             node -role .kubernetes .io /master :NoSchedule

  13.                    node .kubernetes .io /not -ready :NoSchedule

  14. Unschedulable :       false

可以看到1.12版本的kubeadm额外给node1节点设置了一个污点(Taint):node.kubernetes.io/not-ready:NoSchedule,很容易理解,即如果节点还没有ready之前,是不接受调度的。可是如果Kubernetes的网络插件还没有部署的话,节点是不会进入ready状态的。因此我们修改以下kube-flannel.yaml的内容,加入对node.kubernetes.io/not-ready:NoSchedule这个污点的容忍:

                                                                
  1. tolerations :

  2.       - key : node -role .kubernetes .io /master

  3.         operator: Exists

  4.        effect : NoSchedule

  5.       - key : node .kubernetes .io /not -ready

  6.         operator: Exists

  7.        effect : NoSchedule

重新apply一下kubectl apply -f kube-flannel.yml,这次成功完成flannel的部署了。

使用kubectl get pod --all-namespaces -o wide确保所有的Pod都处于Running状态。

  1. kubectl get pod --all-namespaces -o wide

  2. NAMESPACE     NAME                            READY   STATUS    RESTARTS   AGE     IP              NODE    NOMINATED NODE

  3. kube-system   coredns-576cbf47c7-njt7l        1/1     Running   0          12m    10.244.0.3      node1   <none>

  4. kube-system   coredns-576cbf47c7-vg2gd        1/1     Running   0          12m    10.244.0.2      node1   <none>

  5. kube-system   etcd-node1                      1/1     Running   0          12m    192.168.61.11   node1   <none>

  6. kube-system   kube-apiserver-node1            1/1     Running   0          12m    192.168.61.11   node1   <none>

  7. kube-system   kube-controller-manager-node1   1/1     Running   0          12m    192.168.61.11   node1   <none>

  8. kube-system   kube-flannel-ds-amd64-bxtqh     1/1     Running   0          2m     192.168.61.11   node1   <none>

  9. kube-system   kube-proxy-fb542                1/1     Running   0          12m    192.168.61.11   node1   <none>

  10. kube-system   kube-scheduler-node1            1/1     Running   0          12m    192.168.61.11   node1   <none>

后来也在flannel的github中找到了关于node.kubernetes.io/not-ready:NoSchedule这个问题的讨论,相信很快就会将相关配置修改正确,详见https://github.com/coreos/flannel/issues/1044。

2.4 master node参与工作负载

使用kubeadm初始化的集群,出于安全考虑Pod不会被调度到Master Node上,也就是说Master Node不参与工作负载。这是因为当前的master节点node1被打上了node-role.kubernetes.io/master:NoSchedule的污点:

  1. kubectl describe node node1 | grep Taint

  2. Taints:             node-role.kubernetes.io/master:NoSchedule

因为这里搭建的是测试环境,去掉这个污点使node1参与工作负载:

  1. kubectl taint nodes node1 node-role.kubernetes.io/master-

  2. node "node1" untainted

2.5 测试DNS

                                                                        
  1. kubectl run curl --image =radial /busyboxplus :curl -it

  2. kubectl run --generator =deployment /apps .v1beta1 is DEPRECATED and will be removed in a future version . Use kubectl create instead .

  3. If you don't see a command prompt, try pressing enter.

  4. [ root@curl-5cc7b478b6-r997p:/ ]$

进入后执行nslookup kubernetes.default确认解析正常:

  1. nslookup kubernetes.default

  2. Server:    10.96.0.10

  3. Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local

  4. Name:      kubernetes.default

  5. Address 1: 10.96.0.1 kubernetes.default.svc.cluster.local

2.6 向Kubernetes集群中添加Node节点

下面我们将node2这个主机添加到Kubernetes集群中,因为我们同样在node2上的kubelet的启动参数中去掉了必须关闭swap的限制,所以同样需要--ignore-preflight-errors=Swap这个参数。 在node2上执行:

  1. kubeadm join 192.168.61.11:6443 --token zalj3i.q831ehufqb98d1ic --discovery-token-ca-cert-hash sha256:6ee48b19ba61a2dda77f6b60687c5fd11072ab898cfdfef32a68821d1dbe8efa \

  2. --ignore-preflight-errors=Swap

  3. [preflight] running pre-flight checks

  4.        [WARNING RequiredIPVSKernelModulesAvailable]: the IPVS proxier will not be used, because the following required kernel modules are not loaded: [ip_vs_rr ip_vs_wrr ip_vs_sh ip_vs] or no builtin kernel ipvs support: map[ip_vs:{} ip_vs_rr:{} ip_vs_wrr:{} ip_vs_sh:{} nf_conntrack_ipv4:{}]

  5. you can solve this problem with following methods:

  6. 1. Run 'modprobe -- ' to load missing kernel modules;

  7. 2. Provide the missing builtin kernel ipvs support

  8.        [WARNING Swap]: running with swap on is not supported. Please disable swap

  9. [discovery] Trying to connect to API Server "192.168.61.11:6443"

  10. [discovery] Created cluster-info discovery client, requesting info from "https://192.168.61.11:6443"

  11. [discovery] Requesting info from "https://192.168.61.11:6443" again to validate TLS against the pinned public key

  12. [discovery] Cluster info signature and contents are valid and TLS certificate validates against pinned roots, will use API Server "192.168.61.11:6443"

  13. [discovery] Successfully established connection with API Server "192.168.61.11:6443"

  14. [kubelet] Downloading configuration for the kubelet from the "kubelet-config-1.12" ConfigMap in the kube-system namespace

  15. [kubelet] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"

  16. [kubelet] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"

  17. [preflight] Activating the kubelet service

  18. [tlsbootstrap] Waiting for the kubelet to perform the TLS Bootstrap...

  19. [patchnode] Uploading the CRI Socket information "/var/run/dockershim.sock" to the Node API object "node2" as an annotation

  20. This node has joined the cluster:

  21. * Certificate signing request was sent to apiserver and a response was received.

  22. * The Kubelet was informed of the new secure connection details.

  23. Run 'kubectl get nodes' on the master to see this node join the cluster.

node2加入集群很是顺利,下面在master节点上执行命令查看集群中的节点:

  1. kubectl get nodes

  2. NAME      STATUS    ROLES     AGE       VERSION

  3. node1     Ready     master    26m       v1.12.0

  4. node2     Ready     <none>    2m        v1.12.0

如何从集群中移除Node 如果需要从集群中移除node2这个Node执行下面的命令:

在master节点上执行:

  1. kubectl drain node2 --delete-local-data --force --ignore-daemonsets

  2. kubectl delete node node2

在node2上执行:

  1. kubeadm reset

  2. ifconfig cni0 down

  3. ip link delete cni0

  4. ifconfig flannel.1 down

  5. ip link delete flannel.1

  6. rm -rf /var/lib/cni/

在node1上执行:

  1. kubectl delete node node2

3.Kubernetes常用组件部署

越来越多的公司和团队开始使用Helm这个Kubernetes的包管理器,我们也将使用Helm安装Kubernetes的常用组件。

3.1 Helm的安装

Helm由客户端命helm令行工具和服务端tiller组成,Helm的安装十分简单。 下载helm命令行工具到master节点node1的/usr/local/bin下,这里下载的2.9.1版本:

  1. wget https://storage.googleapis.com/kubernetes-helm/helm-v2.11.0-linux-amd64.tar.gz

  2. tar -zxvf helm-v2.11.0-linux-amd64.tar.gz

  3. cd linux-amd64/

  4. cp helm /usr/local/bin/

为了安装服务端tiller,还需要在这台机器上配置好kubectl工具和kubeconfig文件,确保kubectl工具可以在这台机器上访问apiserver且正常使用。 这里的node1节点以及配置好了kubectl。

因为Kubernetes APIServer开启了RBAC访问控制,所以需要创建tiller使用的service account: tiller并分配合适的角色给它。 详细内容可以查看helm文档中的Role-based Access Control。 这里简单起见直接分配cluster-admin这个集群内置的ClusterRole给它。创建rbac-config.yaml文件:

                                                                                        
  1. apiVersion : v1

  2. kind : ServiceAccount

  3. metadata :

  4.  name : tiller

  5.   namespace: kube- system

  6. ---

  7. apiVersion : rbac .authorization .k8s .io /v1beta1

  8. kind : ClusterRoleBinding

  9. metadata :

  10.  name : tiller

  11. roleRef :

  12.  apiGroup : rbac .authorization .k8s .io

  13.  kind : ClusterRole

  14.  name : cluster -admin

  15. subjects :

  16.   - kind : ServiceAccount

  17.    name : tiller

  18.     namespace: kube- system

  1. kubectl create -f rbac-config.yaml

  2. serviceaccount/tiller created

  3. clusterrolebinding.rbac.authorization.k8s.io/tiller created

接下来使用helm部署tiller:

  1. helm init --service-account tiller --skip-refresh

  2. Creating /root/.helm

  3. Creating /root/.helm/repository

  4. Creating /root/.helm/repository/cache

  5. Creating /root/.helm/repository/local

  6. Creating /root/.helm/plugins

  7. Creating /root/.helm/starters

  8. Creating /root/.helm/cache/archive

  9. Creating /root/.helm/repository/repositories.yaml

  10. Adding stable repo with URL: https://kubernetes-charts.storage.googleapis.com

  11. Adding local repo with URL: http://127.0.0.1:8879/charts

  12. $HELM_HOME has been configured at /root/.helm.

  13. Tiller (the Helm server-side component) has been installed into your Kubernetes Cluster.

  14. Please note: by default, Tiller is deployed with an insecure 'allow unauthenticated users' policy.

  15. To prevent this, run `helm init` with the --tiller-tls-verify flag.

  16. For more information on securing your installation see: https://docs.helm.sh/using_helm/#securing-your-helm-installation

  17. Happy Helming!

tiller默认被部署在k8s集群中的kube-system这个namespace下:

  1. kubectl get pod -n kube-system -l app=helm

  2. NAME                             READY   STATUS    RESTARTS   AGE

  3. tiller-deploy-6f6fd74b68-kk2z9   1/1     Running   0          3m17s

  4. helm version

  5. Client: &version.Version{SemVer:"v2.11.0", GitCommit:"2e55dbe1fdb5fdb96b75ff144a339489417b146b", GitTreeState:"clean"}

  6. Server: &version.Version{SemVer:"v2.11.0", GitCommit:"2e55dbe1fdb5fdb96b75ff144a339489417b146b", GitTreeState:"clean

注意由于某些原因需要网络可以访问gcr.io和kubernetes-charts.storage.googleapis.com,如果无法访问可以通过helm init --service-account tiller --tiller-image  /tiller:v2.11.0 --skip-refresh使用私有镜像仓库中的tiller镜像

3.2 使用Helm部署Nginx Ingress

为了便于将集群中的服务暴露到集群外部,从集群外部访问,接下来使用Helm将Nginx Ingress部署到Kubernetes上。 Nginx Ingress Controller被部署在Kubernetes的边缘节点上,关于Kubernetes边缘节点的高可用相关的内容可以查看我前面整理的Bare metal环境下Kubernetes Ingress边缘节点的高可用。 这里简单起见,只有一个edge节点。

我们将node1(192.168.61.11)同时做为边缘节点,打上Label:

  1. kubectl label node node1 node-role.kubernetes.io/edge=

  2. node/node1 labeled

  3. kubectl get node

  4. NAME    STATUS   ROLES         AGE     VERSION

  5. node1   Ready    edge,master   46m     v1.12.0

  6. node2   Ready    <none>        22m     v1.12.0

stable/nginx-ingress chart的值文件ingress-nginx.yaml:

  1. controller:

  2.  service:

  3.    externalIPs:

  4.      - 192.168.61.11

  5.  nodeSelector:

  6.    node-role.kubernetes.io/edge: ''

  7.  tolerations:

  8.      - key: node-role.kubernetes.io/master

  9.        operator: Exists

  10.        effect: NoSchedule

  11. defaultBackend:

  12.  nodeSelector:

  13.    node-role.kubernetes.io/edge: ''

  14.  tolerations:

  15.      - key: node-role.kubernetes.io/master

  16.        operator: Exists

  17.        effect: NoSchedule

  1. helm repo update

  2. helm install stable/nginx-ingress \

  3. -n nginx-ingress \

  4. --namespace ingress-nginx  \

  5. -f ingress-nginx.yaml

  1. kubectl get pod -n ingress-nginx -o wide

  2. NAME                                             READY   STATUS    RESTARTS   AGE     IP            NODE    NOMINATED NODE

  3. nginx-ingress-controller-7577b57874-m4zkv        1/1     Running   0          9m13s   10.244.0.10   node1   <none>

  4. nginx-ingress-default-backend-684f76869d-9jgtl   1/1     Running   0          9m13s   10.244.0.9    node1   <none>

如果访问http://192.168.61.11返回default backend,则部署完成:

  1. curl http://192.168.61.11/

  2. default backend - 404

3.2 将TLS证书配置到Kubernetes中

当使用Ingress将HTTPS的服务暴露到集群外部时,需要HTTPS证书,这里将*.frognew.com的证书和秘钥配置到Kubernetes中。

后边部署在kube-system命名空间中的dashboard要使用这个证书,因此这里先在kube-system中创建证书的secret

  1. kubectl create secret tls frognew-com-tls-secret --cert=fullchain.pem --key=privkey.pem -n kube-system

  2. secret/frognew-com-tls-secret created

3.3 使用Helm部署dashboard

kubernetes-dashboard.yaml:

  1. ingress:

  2.  enabled: true

  3.  hosts:

  4.    - k8s.frognew.com

  5.  annotations:

  6.    nginx.ingress.kubernetes.io/ssl-redirect: "true"

  7.    nginx.ingress.kubernetes.io/secure-backends: "true"

  8.  tls:

  9.    - secretName: frognew-com-tls-secret

  10.      hosts:

  11.      - k8s.frognew.com

  12. rbac:

  13.  clusterAdminRole: true

  1. helm install stable/kubernetes-dashboard \

  2. -n kubernetes-dashboard \

  3. --namespace kube-system  \

  4. -f kubernetes-dashboard.yaml

  1. kubectl -n kube-system get secret | grep kubernetes-dashboard-token

  2. kubernetes-dashboard-token-tjj25                 kubernetes.io/service-account-token   3         37s

  3. kubectl describe -n kube-system secret/kubernetes-dashboard-token-tjj25

  4. Name:         kubernetes-dashboard-token-tjj25

  5. Namespace:    kube-system

  6. Labels:       <none>

  7. Annotations:  kubernetes.io/service-account.name=kubernetes-dashboard

  8.              kubernetes.io/service-account.uid=d19029f0-9cac-11e8-8d94-080027db403a

  9. Type:  kubernetes.io/service-account-token

  10. Data

  11. ====

  12. namespace:  11 bytes

  13. token:      eyJhbGciOiJSUzI1NiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJrdWJlcm5ldGVzLWRhc2hib2FyZC10b2tlbi10amoyNSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50Lm5hbWUiOiJrdWJlcm5ldGVzLWRhc2hib2FyZCIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6ImQxOTAyOWYwLTljYWMtMTFlOC04ZDk0LTA4MDAyN2RiNDAzYSIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDprdWJlLXN5c3RlbTprdWJlcm5ldGVzLWRhc2hib2FyZCJ9.w1HZrtBOhANdqSRLNs22z8dQWd5IOCpEl9VyWQ6DUwhHfgpAlgdhEjTqH8TT0f4ftu_eSPnnUXWbsqTNDobnlxet6zVvZv1K-YmIO-o87yn2PGIrcRYWkb-ADWD6xUWzb0xOxu2834BFVC6T5p5_cKlyo5dwerdXGEMoz9OW0kYvRpKnx7E61lQmmacEeizq7hlIk9edP-ot5tCuIO_gxpf3ZaEHnspulceIRO_ltjxb8SvqnMglLfq6Bt54RpkUOFD1EKkgWuhlXJ8c9wJt_biHdglJWpu57tvOasXtNWaIzTfBaTiJ3AJdMB_n0bQt5CKAUnKBhK09NP3R0Qtqog

在dashboard的登录窗口使用上面的token登录。

图片

3.4 使用Helm部署metrics-server

从Heapster的github https://github.com/kubernetes/heapster中可以看到已经,heapster已经DEPRECATED。这里heapster的deprecation timeline。可以看出heapster从Kubernetes 1.12开始将从Kubernetes各种安装脚本中移除。

Kubernetes推荐使用metrics-server(https://github.com/kubernetes-incubator/metrics-server)。我们这里也使用helm来部署metrics-server。

metrics-server.yaml:

  1. args:

  2. - --logtostderr

  3. - --kubelet-insecure-tls

  1. helm install stable/metrics-server \

  2. -n metrics-server \

  3. --namespace kube-system \

  4. -f metrics-server.yaml

部署后,查看metrics-server的日志,报下面的错误:

  1. E1003 05:46:13.757009       1 manager.go:102] unable to fully collect metrics: [unable to fully scrape metrics from source kubelet_summary:node1: unable to fetch metrics from Kubelet node1 (node1): Get https://node1:10250/stats/summary/: dial tcp: lookup node1 on 10.96.0.10:53: no such host, unable to fully scrape metrics from source kubelet_summary:node2: unable to fetch metrics from Kubelet node2 (node2): Get https://node2:10250/stats/summary/: dial tcp: lookup node2 on 10.96.0.10:53: read udp 10.244.1.6:45288->10.96.0.10:53: i/o timeout]

可以看到metrics-server在从kubelet的10250端口获取信息时,使用的是hostname,而因为node1和node2是一个独立的演示环境,只是修改了这两个节点系统的/etc/hosts文件,而并没有内网的DNS服务器,所以metrics-server中不认识node1和node2的名字。这里我们可以直接修改Kubernetes集群中的coredns的configmap,修改Corefile加入hostnames插件,将Kubernetes的各个节点的主机名加入到hostnames中,这样Kubernetes集群中的所有Pod都可以从CoreDNS中解析各个节点的名字。

                                                                                                                
  1. kubectl edit configmap coredns -n kube -system

  2. apiVersion : v1

  3. data :

  4.   Corefile: |

  5.     .:53 {

  6.        errors

  7.        health

  8.        hosts {

  9.           192.168. 61.11 node1

  10.           192.168. 61.12 node2

  11.           fallthrough

  12.         }

  13.        kubernetes cluster .local in -addr .arpa ip6 .arpa {

  14.           pods insecure

  15.           upstream

  16.           fallthrough in- addr. arpa ip6. arpa

  17.         }

  18.        prometheus :9153

  19.        proxy . /etc /resolv .conf

  20.        cache 30

  21.        loop

  22.        reload

  23.        loadbalance

  24.     }

  25. kind : ConfigMap

配置修改完毕后重启集群中coredns和metrics-server,确认metrics-server不再有错误日志。使用下面的命令可以获取到关于集群节点基本的指标信息:

  1. kubectl get --raw "/apis/metrics.k8s.io/v1beta1/nodes"

遗憾的是,当前Kubernetes Dashboard还不支持metrics-server。因此如果使用metrics-server替代了heapster,将无法在dashboard中以图形展示Pod的内存和CPU情况(实际上这也不是很重要,当前我们是在Prometheus和Grafana中定制的Kubernetes集群中各个Pod的监控,因此在dashboard中查看Pod内存和CPU也不是很重要)。 Dashboard的github上有很多这方面的讨论,如https://github.com/kubernetes/dashboard/issues/3217和https://github.com/kubernetes/dashboard/issues/3270,Dashboard已经准备在将来的某个时间点支持metrics-server。但由于metrics-server和metrics pipeline肯定是Kubernetes在monitor方面未来的方向,所以我们也很果断的在各个环境中切换到了metrics-server。

4.总结

本次安装涉及到的Docker镜像:

  1. # kubernetes

  2. k8s.gcr.io/kube-apiserver:v1.12.0

  3. k8s.gcr.io/kube-controller-manager:v1.12.0

  4. k8s.gcr.io/kube-scheduler:v1.12.0

  5. k8s.gcr.io/kube-proxy:v1.12.0

  6. k8s.gcr.io/etcd:3.2.24

  7. k8s.gcr.io/pause:3.1

  8. # network and dns

  9. quay.io/coreos/flannel:v0.10.0-amd64

  10. k8s.gcr.io/coredns:1.2.2

  11. # helm and tiller

  12. gcr.io/kubernetes-helm/tiller:v2.11.0

  13. # nginx ingress

  14. quay.io/kubernetes-ingress-controller/nginx-ingress-controller:0.19.0

  15. k8s.gcr.io/defaultbackend:1.4

  16. # dashboard and metric-sever

  17. k8s.gcr.io/kubernetes-dashboard-amd64:v1.10.0

  18. gcr.io/google_containers/metrics-server-amd64:v0.3.0

参考

  • Installing kubeadm

  • Using kubeadm to Create a Cluster

  • Get Docker CE for CentOS

  • https://kubernetes.io/docs/setup/independent/install-kubeadm/ 

  • https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/ 

  • https://docs.docker.com/engine/installation/linux/docker-ce/centos/

原文

  • 作者:青蛙小白

  • https://blog.frognew.com/2018/10/kubeadm-install-kubernetes-1.12.html