JS中浮点数精度问题

36,474 阅读6分钟

  最近在做项目的时候,涉及到商品价格的计算,经常会出现计算出现精度问题。刚开始草草了事,直接用toFixed就解决了问题,并没有好好的思考一下这个问题。后来慢慢的,问题越来越多,连toFixed也出现了(允悲),后来经过搜索网上的各种博客和论坛,整理总结了一下。

问题的发现

  总结了一下,一共有以下两种问题

浮点数运算后的精度问题

  在计算商品价格加减乘除时,偶尔## 会出现精度问题,一些常见的例子如下:

// 加法 =====================
0.1 + 0.2 = 0.30000000000000004
0.7 + 0.1 = 0.7999999999999999
0.2 + 0.4 = 0.6000000000000001

// 减法 =====================
1.5 - 1.2 = 0.30000000000000004
0.3 - 0.2 = 0.09999999999999998
 
// 乘法 =====================
19.9 * 100 = 1989.9999999999998
0.8 * 3 = 2.4000000000000004
35.41 * 100 = 3540.9999999999995

// 除法 =====================
0.3 / 0.1 = 2.9999999999999996
0.69 / 10 = 0.06899999999999999

toFixed奇葩问题

  在遇到浮点数运算后出现的精度问题时,刚开始我是使用toFixed(2)来解决的,因为在W3school和菜鸟教程(他们均表示这锅不背)上明确写着定义:toFixed()方法可把Number四舍五入为指定小数位数的数字。

  但是在chrome下测试结果不太令人满意:

1.35.toFixed(1) // 1.4 正确
1.335.toFixed(2) // 1.33  错误
1.3335.toFixed(3) // 1.333 错误
1.33335.toFixed(4) // 1.3334 正确
1.333335.toFixed(5)  // 1.33333 错误
1.3333335.toFixed(6) // 1.333333 错误

  使用IETester在IE下面测试的结果却是正确的。

为什么会产生

  让我们来看一下为什么0.1+0.2会等于0.30000000000000004,而不是0.3。首先,想要知道为什么会产生这样的问题,让我们回到大学里学的复(ku)杂(zao)的计算机组成原理。虽然已经全部还给大学老师了,但是没关系,我们还有百度嘛。

浮点数的存储

  和其它语言如Java和Python不同,JavaScript中所有数字包括整数和小数都只有一种类型 — Number。它的实现遵循 IEEE 754 标准,使用64位固定长度来表示,也就是标准的 double 双精度浮点数(相关的还有float 32位单精度)。

  这样的存储结构优点是可以归一化处理整数和小数,节省存储空间。

  64位比特又可分为三个部分:

  • 符号位S:第 1 位是正负数符号位(sign),0代表正数,1代表负数

  • 指数位E:中间的 11 位存储指数(exponent),用来表示次方数

  • 尾数位M:最后的 52 位是尾数(mantissa),超出的部分自动进一舍零

Storage

浮点数的运算

  那么JavaScript在计算0.1+0.2时到底发生了什么呢?

  首先,十进制的0.1和0.2会被转换成二进制的,但是由于浮点数用二进制表示时是无穷的:

0.1 -> 0.0001 1001 1001 1001...(1100循环)
0.2 -> 0.0011 0011 0011 0011...(0011循环)

  IEEE 754 标准的 64 位双精度浮点数的小数部分最多支持53位二进制位,所以两者相加之后得到二进制为:

0.0100110011001100110011001100110011001100110011001100 

  因浮点数小数位的限制而截断的二进制数字,再转换为十进制,就成了0.30000000000000004。所以在进行算术计算时会产生误差。

解决方法

  针对以上两个问题,网上搜了一波解决方法,基本都大同小异的,分别来看一下。

解决toFixed

  针对toFixed的兼容性问题,我们可以把toFix重写一下来解决,代码如下:

// toFixed兼容方法
Number.prototype.toFixed = function(len){
    if(len>20 || len<0){
        throw new RangeError('toFixed() digits argument must be between 0 and 20');
    }
    // .123转为0.123
    var number = Number(this);
    if (isNaN(number) || number >= Math.pow(10, 21)) {
        return number.toString();
    }
    if (typeof (len) == 'undefined' || len == 0) {
        return (Math.round(number)).toString();
    }
    var result = number.toString(),
        numberArr = result.split('.');

    if(numberArr.length<2){
        //整数的情况
        return padNum(result);
    }
    var intNum = numberArr[0], //整数部分
        deciNum = numberArr[1],//小数部分
        lastNum = deciNum.substr(len, 1);//最后一个数字
    
    if(deciNum.length == len){
        //需要截取的长度等于当前长度
        return result;
    }
    if(deciNum.length < len){
        //需要截取的长度大于当前长度 1.3.toFixed(2)
        return padNum(result)
    }
    //需要截取的长度小于当前长度,需要判断最后一位数字
    result = intNum + '.' + deciNum.substr(0, len);
    if(parseInt(lastNum, 10)>=5){
        //最后一位数字大于5,要进位
        var times = Math.pow(10, len); //需要放大的倍数
        var changedInt = Number(result.replace('.',''));//截取后转为整数
        changedInt++;//整数进位
        changedInt /= times;//整数转为小数,注:有可能还是整数
        result = padNum(changedInt+'');
    }
    return result;
    //对数字末尾加0
    function padNum(num){
        var dotPos = num.indexOf('.');
        if(dotPos === -1){
            //整数的情况
            num += '.';
            for(var i = 0;i<len;i++){
                num += '0';
            }
            return num;
        } else {
            //小数的情况
            var need = len - (num.length - dotPos - 1);
            for(var j = 0;j<need;j++){
                num += '0';
            }
            return num;
        }
    }
}

  我们通过判断最后一位是否大于等于5来决定需不需要进位,如果需要进位先把小数乘以倍数变为整数,加1之后,再除以倍数变为小数,这样就不用一位一位的进行判断。

解决浮点数运算精度

  既然我们发现了浮点数的这个问题,又不能直接让两个浮点数运算,那怎么处理呢?

  我们可以把需要计算的数字升级(乘以10的n次幂)成计算机能够精确识别的整数,等计算完成后再进行降级(除以10的n次幂),这是大部分变成语言处理精度问题常用的方法。例如:

0.1 + 0.2 == 0.3 //false
(0.1*10 + 0.2*10)/10 == 0.3 //true

  但是这样就能完美解决么?细心的读者可能在上面的例子里已经发现了问题:

35.41 * 100 = 3540.9999999999995

  看来进行数字升级也不是完全的可靠啊(允悲)。

  但是魔高一尺道高一丈,这样就能难住我们么,我们可以将浮点数toString后indexOf('.'),记录一下小数位的长度,然后将小数点抹掉,完整的代码如下:

 /*** method **
 *  add / subtract / multiply /divide
 * floatObj.add(0.1, 0.2) >> 0.3
 * floatObj.multiply(19.9, 100) >> 1990
 *
 */
var floatObj = function() {

    /*
     * 判断obj是否为一个整数
     */
    function isInteger(obj) {
        return Math.floor(obj) === obj
    }

    /*
     * 将一个浮点数转成整数,返回整数和倍数。如 3.14 >> 314,倍数是 100
     * @param floatNum {number} 小数
     * @return {object}
     *   {times:100, num: 314}
     */
    function toInteger(floatNum) {
        var ret = {times: 1, num: 0}
        if (isInteger(floatNum)) {
            ret.num = floatNum
            return ret
        }
        var strfi  = floatNum + ''
        var dotPos = strfi.indexOf('.')
        var len    = strfi.substr(dotPos+1).length
        var times  = Math.pow(10, len)
        var intNum = Number(floatNum.toString().replace('.',''))
        ret.times  = times
        ret.num    = intNum
        return ret
    }

    /*
     * 核心方法,实现加减乘除运算,确保不丢失精度
     * 思路:把小数放大为整数(乘),进行算术运算,再缩小为小数(除)
     *
     * @param a {number} 运算数1
     * @param b {number} 运算数2
     * @param digits {number} 精度,保留的小数点数,比如 2, 即保留为两位小数
     * @param op {string} 运算类型,有加减乘除(add/subtract/multiply/divide)
     *
     */
    function operation(a, b, digits, op) {
        var o1 = toInteger(a)
        var o2 = toInteger(b)
        var n1 = o1.num
        var n2 = o2.num
        var t1 = o1.times
        var t2 = o2.times
        var max = t1 > t2 ? t1 : t2
        var result = null
        switch (op) {
            case 'add':
                if (t1 === t2) { // 两个小数位数相同
                    result = n1 + n2
                } else if (t1 > t2) { // o1 小数位 大于 o2
                    result = n1 + n2 * (t1 / t2)
                } else { // o1 小数位 小于 o2
                    result = n1 * (t2 / t1) + n2
                }
                return result / max
            case 'subtract':
                if (t1 === t2) {
                    result = n1 - n2
                } else if (t1 > t2) {
                    result = n1 - n2 * (t1 / t2)
                } else {
                    result = n1 * (t2 / t1) - n2
                }
                return result / max
            case 'multiply':
                result = (n1 * n2) / (t1 * t2)
                return result
            case 'divide':
                result = (n1 / n2) * (t2 / t1)
                return result
        }
    }

    // 加减乘除的四个接口
    function add(a, b, digits) {
        return operation(a, b, digits, 'add')
    }
    function subtract(a, b, digits) {
        return operation(a, b, digits, 'subtract')
    }
    function multiply(a, b, digits) {
        return operation(a, b, digits, 'multiply')
    }
    function divide(a, b, digits) {
        return operation(a, b, digits, 'divide')
    }

    // exports
    return {
        add: add,
        subtract: subtract,
        multiply: multiply,
        divide: divide
    }
}();

  如果觉得floatObj调用麻烦,我们可以在Number.prototype上添加对应的运算方法。

如果觉得写得还不错,请关注我的掘金主页。更多文章请访问谢小飞的博客