iOS开发基础——线程安全(线程锁)

4,664 阅读12分钟

小记

在IOS上进行多线程开发,为了保证线程安全,防止资源竞争,需要给进程进行加锁,通常用到的进程锁分为7种。

  • 信号量
  • 互斥锁
  • 自旋锁
  • 递归锁
  • 条件锁
  • 读写锁
  • 分布式锁

锁:是保证线程安全常见的同步工具,防止Data race(数据竞争)的发生。

Data race(数据竞争):

  • 两个或者更多线程在一个程序中,并发的访问同一数据
  • 至少一个访问是写入操作
  • 些线程都不使用任何互斥锁来控制这些访问

pthread_mutex

pthread_mutexattr_t attr;  
pthread_mutexattr_init(&attr);  
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL);  // 定义锁的属性

pthread_mutex_t mutex;  
pthread_mutex_init(&mutex, &attr) // 创建锁
pthread_mutex_lock(&mutex); // 申请锁  
pthread_mutex_unlock(&mutex); // 释放锁  

其中,锁的属性包含一下四种:

PTHREAD_MUTEX_NORMAL:默认值普通锁,当一个线程加锁以后,其他线程进入按照优先顺序进入等待队列,并且解锁的时候按照先入先出的方式获得锁。
PTHREAD_MUTEX_ERRORCHECK:检错锁,当同一个线程获得同一个锁的时候,则返回EDEADLK,否则与普通锁处理一样。
PTHREAD_MUTEX_RECURSIVE:递归锁。这里有别于上面的检错锁,同一个线程可以递归获得锁,但是加锁和解锁必须要一一对应。
PTHREAD_MUTEX_DEFAULT:适应锁,等待解锁之后重新竞争,没有等待队列。

信号量

dispatch_semaphore是GCD用来同步的一种方式,dispatch_semephore_create方法用户创建一个dispatch_semephore_t类型的信号量,初始的参数必须大于0,该参数用来表示该信号量有多少个信号,简单的说也就是同事允许多少个线程访问。 dispatch_semaphore_wait方法是等待一个信号量,该方法会判断signal的信号值是否大于0,如果大于0则不会阻塞线程,消耗点一个信号值,执行后续任务。如果信号值等于0那么就和NSCondition一样,阻塞当前线程进入等待状态,如果等待时间未超过timeout并且dispatch_semaphore_signal释放了了一个信号值,那么就会消耗掉一个信号值并且向下执行。如果期间一直不能获得信号量并且超过超时时间,那么就会自动执行后续语句。

  • dispatch_semaphore_create(long value);//创造信号量
  • dispatch_semaphore_wait(dispatch_semaphore_t dsema, dispatch_time_t timeout);//等待信号
  • dispatch_semaphore_signal(dispatch_semaphore_t dsema);//发送信号

实例代码:

- (void)semaphoreSync {
    NSLog(@"semaphore---begin");
    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
    //创建初始信号量 为 0 ,阻塞所有线程
    dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);
    __block int number = 0;
    dispatch_async(queue, ^{
        // 追加任务A
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        number = 100;
        // 执行完线程,信号量加 1,信号总量从 0 变为 1
        dispatch_semaphore_signal(semaphore);
    });
    //原任务B
    ////若计数为0则一直等待,直到接到总信号量变为 >0 ,继续执行后续代码
    dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
    NSLog(@"semaphore---end,number = %d",number);
}

互斥锁

互斥锁的实现原理与信号量非常相似,不是使用忙等,而是阻塞线程并睡眠,需要进行上下文切换。
当一个线程获得这个锁之后,其他想要获得此锁的线程将会被阻塞,直到该锁被释放。
当临界区加上互斥锁以后,其他的调用方不能获得锁,只有当互斥锁的持有方释放锁之后其他调用方才能获得锁。
调用方在获得锁的时候发现互斥锁已经被其他方持有,那么该调用方只能进入睡眠状态,这样不会占用CPU资源。但是会有时间的消耗,系统的运行时基于CPU时间调度的,每次线程可能有100ms的运行时间,频繁的CPU切换也会消耗一定的时间。

NSLock:

NSLock遵循NSLocking协议,同时也是互斥锁,提供了lockunlock方法来进行加锁和解锁。 NSLock内部是封装了pthread_mutext,类型是PTHREAD_MUTEXT_ERRORCHECK,它会损失一定的性能换来错误提示。

- (void)lock;  
- (void)unlock; 
- (BOOL)tryLock;  
- (BOOL)lockBeforeDate:(NSDate *)limit;  

tryLocklock方法都会请求加锁,唯一不同的是trylock在没有获得锁的时候可以继续做一些任务和处理。lockBeforeDate:方法也比较简单,就是在limit时间点之前获得锁,没有拿到锁就返回NO。

@synchronized:

这其实是一个 OC 层面的锁,防止不同的线程同时执行同一段代码,相比于使用 NSLock 创建锁对象、加锁和解锁来说,@synchronized用着更方便,可读性更高。
大体上,想要明白@synchronized,需要知道在@synchronizedobjc_sync_enterobjc_sync_exit 的成对调用,而且每个传入的对象,都会为其分配一个递归锁并存储在哈希表中。在objc_sync_enter中加锁,在objc_sync_exit 中解锁。
具体可以参考这篇文章: 关于 @synchronized,这儿比你想知道的还要多

@synchronized(self) {  
    //数据操作  
}

自旋锁

自旋锁的目的是为了确保临界区只有一个线程可以访问。
当一个线程获得锁之后,其他线程将会一直循环在哪里查看是否该锁被释放,是用于多线程同步的一种锁,线程反复检查锁变量是否可用。由于线程在这一过程中保持执行,因此是一种忙等待。一旦获取了自旋锁,线程会一直保持该锁,直至显式释放自旋锁。自旋锁避免了进程上下文的调度开销,因此对于线程只会阻塞很短时间的场合是有效的。
由于调用方会一直循环看该自旋锁的的保持者是否已经释放了资源,所以总的效率来说比互斥锁高。但是自旋锁只用于短时间的资源访问,如果不能短时间内获得锁,就会一直占用着CPU,造成效率低下。

OSSpinLock:

自旋锁的一种,由于在某些场景下不安全已被弃用。 需导入头文件#import <libkern/OSAtomic.h>

OSSpinLock lock = OS_SPINLOCK_INIT;  
OSSpinLockLock(&lock);  
OSSpinLockUnlock(&lock);
OSSpinLockTry(&lock);

自旋锁存在优先级反转问题OSSpinLock是自旋锁,也正是由于它是自旋锁,所以容易发生优先级反转的问题。在ibireme的文章中已经写到,当一个低优先级线程获得锁的时候,如果此时一个高优先级的系统到来,那么会进入忙等状态,不会进入睡眠,此时会一直占用着系统CPU时间,导致低优先级的无法拿到CPU时间片,从而无法完成任务也无法释放锁。除非能保证访问锁的线程全部处于同一优先级,否则系统所有的自旋锁都会出现优先级反转的问题。现在苹果的OSSpinLock已经被替换成

os_unfair_lock 
typedef int32_t OSSpinLock OSSPINLOCK_DEPRECATED_REPLACE_WITH(os_unfair_lock);

os_unfair_lock(OSSpinLock 替代品):

os_unfair_lock 是苹果官方推荐的替换OSSpinLock的方案,用于解决OSSpinLock优先级反转问题,但是它在iOS10.0以上的系统才可以调用。
os_unfair_lock 非自旋锁,是一个互斥锁,引用SoC兄的文章os_unfair_lock的类型和自旋锁与互斥锁的比较,包括在在apple的官方文档里面也是写明的了,“ This function doesn't spin on contention, but instead waits in the kernel to be awoken by an unlock”,文中只是指出os_unfair_lock 是苹果推出替代 OSSpinLock的一种相对高效的锁,并不是说其是自旋锁。
导入头文件 #import< os/lock.h >

os_unfair_lock_t unfairLock;  
unfairLock = &(OS_UNFAIR_LOCK_INIT);  
os_unfair_lock_lock(unfairLock);  
os_unfair_lock_unlock(unfairLock);
os_unfair_lock_trylock(unfairLock);

递归锁

需要使用递归锁的情况:

NSLock *lock = [[NSLock alloc] init];
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
    static void (^RecursiveLock)(int);
    RecursiveLock = ^(int value) {
        [lock lock];
        if (value > 0) {
            NSLog(@"value = %d", value);
            sleep(2);
            RecursiveLock(value - 1);
        }
        [lock unlock];
    };
    RecursiveLock(5);
});

这段代码是一个典型的死锁情况。在我们的线程中,RecursiveMethod是递归调用的。所有每次进入这个block时,都会去加一次锁,而从第二次开始,由于锁已经被使用了且没有解锁,所有它需要等待锁被解除,这样就导致了死锁,线程被阻塞住了。导致crach

*** -[NSLock lock]: deadlock ( '(null)')   *** Break on _NSLockError() to debug.

NSRecursiveLock

递归锁也是通过 pthread_mutex_lock函数来实现,在函数内部会判断锁的类型,如果显示是递归锁,就允许递归调用,仅仅将一个计数器加一,锁的释放过程也是同理。
一个锁可以被同一线程多次请求,而不会引起死锁。这主要是用在循环或递归操作中。 NSRecursiveLockNSLock的区别在于内部封装的pthread_mutex_t 对象的类型不同,前者的类型为 PTHREAD_MUTEX_RECURSIVE
主要操作:

  • NSRecursiveLock *lock = [[NSRecursiveLock alloc] init]; // 创建递归锁
  • [lock lockBeforeDate:date];// 在给定的时间之前去尝试请求一个锁
  • [lock tryLock];// 尝试去请求一个锁,并会立即返回一个布尔值,表示尝试是否成功

另外,NSRecursiveLock还声明了一个name属性,如下:
@property(copy) NSString *name
我们可以使用这个字符串来标识一个锁。Cocoa也会使用这个name作为错误描述信息的一部分。

条件锁

NSCondition

封装了一个互斥锁和信号量,它把前者的lock以及后者的wait/signal统一到NSCondition对象中,是基于条件变量pthread_cond_t来实现的,和信号量相似,如果当前线程不满足条件,那么就会进入睡眠状态,等待其他线程释放锁或者释放信号之后,就会唤醒线程。
NSCondition 的对象实际上作为一个锁和一个线程检查器:锁主要为了当检测条件时保护数据源,执行条件引发的任务;线程检查器主要是根据条件决定是否继续运行线程,即线程是否被阻塞。

  • NSCondition同样实现了NSLocking协议,所以它和NSLock一样,也有NSLocking协议的lockunlock方法,可以当做NSLock来使用解决线程同步问题,用法完全一样。
  • NSCondition提供了waitsignal,和条件信号量类似。比如我们要监听array数组的个数,当array的个数大于0的时候就执行清空操作。思路是这样的,当array个数大于0时执行清空操作,否则,wait等待执行清空操作。当array个数增加的时候发生signal信号,让等待的线程唤醒继续执行。
    NSCondition *lock = [[NSCondition alloc] init];
    NSMutableArray *array = [[NSMutableArray alloc] init];
    //消费者
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        [lock lock];
        while (!array.count) {
            [lock wait];
        }
        [array removeAllObjects];
        [lock unlock];
    });
    //生产者
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(1);//以保证让线程2的代码后执行
        [lock lock];
        [array addObject:@1];
        [lock signal];
        [lock unlock];
    });
    
  • NSCondition可以给每个线程分别加锁,加锁后不影响其他线程进入临界区。但是正是因为这种分别加锁的方式,NSCondition使用wait并使用加锁后并不能真正的解决资源的竞争。例如:

    不能让m<0。假设当前m=0,线程A要判断到m>0为假,执行等待;线程B执行了m=1操作,并唤醒线程A执行m-1操作的同时线程C判断到m>0,因为他们在不同的线程锁里面,同样判断为真也执行了m-1,这个时候线程A和线程C都会执行m-1,但是m=1,结果就会造成m=-1.

NSCoditionLock

NSConditionLock也可以像NSCondition一样做多线程之间的任务等待调用,而且是线程安全的。
NSConditionLock同样实现了NSLocking协议,性能比较低。

NSConditonLock内部持有了一个NSCondition对象和_condition_value属性,当调用

- (instancetype)initWithCondition:(NSInteger)condition

初始化的时候会传入一个condition参数,该参数会赋值_condition_value属性

常用方法:
  • lock不分条件,如果锁没被申请,直接执行代码
  • lockBeforeDate: 在指定时间前尝试加锁,返回bool
  • lockWhenCondition:满足特定条件Condition,加锁执行相应代码
  • lockWhenCondition: beforeDate:和上条相同,增加时间戳
  • tryLock尝试着加锁,返回bool
  • tryLockWhenCondition:,满足特定条件Condition,尝试着加锁,返回bool
  • unlock不会清空条件,之后满足条件的锁还会执行
  • unlockWithCondition:设置解锁条件(同一时刻只有一个条件,如果已经设置条件,相当于修改条件)
实例:
- (void)executeNSConditionLock {
    NSConditionLock* lock = [[NSConditionLock alloc] init];
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        for (NSUInteger i=0; i<3; i++) {
            sleep(2);
            if (i == 2) {
                [lock lock];
                [lock unlockWithCondition:i];
            }
        }
    });
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(1);
        [self threadMethodOfNSCoditionLock:lock];
    });
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(1);
        [self threadMethodOfNSCoditionLock:lock];
    });
}
-(void)threadMethodOfNSCoditionLock:(NSConditionLock*)lock{
    [lock lockWhenCondition:2];
    [lock unlock];
}

读写锁

读写锁,在对文件进行操作的时候,写操作是排他的,一旦有多个线程对同一个文件进行写操作,后果不可估量,但读是可以的,多个线程读取时没有问题的。

pthread_rwlock

读写锁可以有三种状态:

  • 读模式下加锁状态,
  • 写模式下加锁状态,
  • 不加锁状态。

一次只有一个线程可以占有写模式的读写锁,但是多个线程可用同时占有读模式的读写锁。读写锁也叫做共享-独占锁,当读写锁以读模式锁住时,它是以共享模式锁住的,当它以写模式锁住时,它是以独占模式锁住的。
因此:

  • 当读写锁被一个线程以读模式占用的时候,写操作的其他线程会被阻塞,读操作的其他线程还可以继续进行
  • 当读写锁被一个线程以写模式占用的时候,写操作的其他线程会被阻塞,读操作的其他线程也被阻塞。

注意:

  • 如果自己已经获取了读锁,再去加写锁,会出现死锁的
// 初始化
pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;
//获取一个读出锁
int pthread_rwlock_rdlock(pthread_rwlock_t *rwptr); 
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwptr);
//获取一个写入锁
int pthread_rwlock_wrlock(pthread_rwlock_t *rwptr); 
int pthread_rwlock_trywrlock(pthread_rwlock_t *rwptr);

int pthread_rwlock_unlock(pthread_rwlock_t *rwptr); //释放一个写入锁或者读出锁


//读写锁属性:
int pthread_rwlock_init(pthread_rwlock_t *rwptr, const pthread_rwlockattr_t *attr)
int pthread_rwlock_destroy(pthread_rwlock_t *rwptr);

int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);
int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);

int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *attr, int *valptr);
int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr, int valptr);

实例:

// 初始化
pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER
// 读模式
pthread_rwlock_wrlock(&lock);
// 写模式
pthread_rwlock_rdlock(&lock);
// 读模式或者写模式的解锁
pthread_rwlock_unlock(&lock);
dispatch_async(dispatch_get_global_queue(0, 0), ^{
    [self readBookWithTag:1];
});
    dispatch_async(dispatch_get_global_queue(0, 0), ^{
    [self readBookWithTag:2];
});
    dispatch_async(dispatch_get_global_queue(0, 0), ^{
    [self writeBook:3];
});
    dispatch_async(dispatch_get_global_queue(0, 0), ^{
    [self writeBook:4];
});
    dispatch_async(dispatch_get_global_queue(0, 0), ^{
    [self readBookWithTag:5];
});
- (void)readBookWithTag:(NSInteger )tag {
    pthread_rwlock_rdlock(&rwLock);
    self.path = [[NSBundle mainBundle] pathForResource:@"1" ofType:@".doc"];
    self.contentString = [NSString stringWithContentsOfFile:self.path encoding:NSUTF8StringEncoding error:nil];
    pthread_rwlock_unlock(&rwLock);
}
- (void)writeBook:(NSInteger)tag {
    pthread_rwlock_wrlock(&rwLock);
    [self.contentString writeToFile:self.path atomically:YES encoding:NSUTF8StringEncoding error:nil];
    pthread_rwlock_unlock(&rwLock);
}

分布式锁

NSDistributedLock,分布锁,文件方式实现,可以跨进程 用tryLock方法获取锁。 用unlock方法释放锁。如果一个获取锁的进行在释放锁之前挂了,那么锁就一直得不到释放了,此时可以通过breakLock强行获取锁。

注:这种锁在ios上基本用不到,不过多探究。