阅读 125

JB的Python之旅-生成器、闭包、装饰器

缘由

昨天突然在某群看到这么一段对话:

image.png-110kB
image.png-88.8kB
image.png-95.9kB

jb关注的重点是生成器闭包装饰器元编程,显然,作为一位测试同学,会点py,可以让饭更香,但是,如果简历上写着精通py,那是否真的懂这些呢?

反正,jb是不懂的,如有错误,欢迎交流,大神请轻喷;

image.png-881.8kB

生成器 & 迭代器

要说生成器,得先知道生成器是解决什么问题的;

相信大家都用过列表,假如list里面有100W个元素,而只需要前面几个元素,而list对象会一次性把所有元素都加载到内存,这样就会造成后面的元素所占的内存空间是白白浪费的;

那有没有方案解决这问题?有,那就是迭代器

迭代器

迭代器,顾名思义就是用来迭代操作的对象,跟list一样,可以迭代获取每一个元素,跟list区别在于,构建迭代器的时候,不像列表把所有元素一次性加载到内存,而是以一种延迟计算(lazy evaluation)方式返回元素

而迭代器有两个基本的方法:inter()next()

实现了__iter____next__方法的对象都称为迭代器,在调用next()的时候返回下一个值,如果容器中没有更多元素了,则抛出StopIteration异常;


import sys         # 引入 sys 模块
 
list=[1,2,3,4]
it = iter(list)    # 创建迭代器对象
 
while True:
    try:
        print (next(it))
    except StopIteration:
        sys.exit()
复制代码

生成器

Python中,使用了yield的函数被称为生成器;

在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行;

例子,生成器:

def jb(N):
    for i in range(N):
        yield i**2

for item in jb(5):
    print(item)
复制代码

普通函数:

def jb(N):
    res = []
    for i in range(N):
        res.append(i*i)
    return(res)

for item in jb(5):
    print(item)
复制代码

闭包

作用域

作用域是程序运行时变量可被访问的范围,定义在函数内的变量是局部变量,局部变量的作用范围只能是函数内部范围内,它不能在函数外引用;

def foo():
    num = 10 # 局部变量
print(num)  # NameError: name 'num' is not defined
复制代码

定义在模块最外层的变量是全局变量,它是全局范围内可见的,当然在函数里面也可以读取到全局变量的。例如:

num = 10 # 全局变量
def foo():
    print(num)  # 10
复制代码

嵌套函数

函数不仅可以定义在模块的最外层,还可以定义在另外一个函数的内部,像这种定义在函数里面的函数称之为嵌套函数

def print_msg():
    # print_msg 是外围函数
    msg = "jb is here"

    def printer():
        # printer是嵌套函数
        print(msg)
    printer()
# 输出 jb is here
print_msg()
复制代码

闭包的定义

闭包的概念就是当我们在函数内定义一个函数时,这个内部函数使用了外部函数的临时变量,且外部函数的返回值是内部函数的引用时,称之为闭包;
复制代码
# 一个简单的实现计算平均值的代码
 
def get_avg():
    scores = []  # 外部临时变量
 
    def inner_count_avg(val):  # 内部函数,用于计算平均值
        scores.append(val)  # 使用外部函数的临时变量
        return sum(scores) / len(scores)  # 返回计算出的平均值
 
    return inner_count_avg  # 外部函数返回内部函数引用
 
avg = get_avg()
print(avg(10))  # 10
print(avg(11))  # 10.5

复制代码

相加的例子:

def adder(x):
    def wrapper(y):
        return x + y
    return wrapper

# adder5对象是adder返回的闭包对象
adder5 = adder(5)
# 输出 15
adder5(10)
# 输出 11
adder5(6)
复制代码

装饰器

闭包的实际使用,大多数是用于装饰器,而这是什么东西?

假设程序实现了say_hello()say_goodbye()两个函数;

def say_hello():
    print "hello!"
    
def say_goodbye():
    print "hello!"  # bug here

if __name__ == '__main__':
    say_hello()
    say_goodbye()
复制代码

但是在实际调用中,发现程序出错了,上面的代码打印了两个hello,经过调试发现是say_goodbye()出错了;

负责人要求调用每个方法前都要记录进入函数的名称,比如这样:

Copy
[DEBUG]: Enter say_hello()
Hello!
[DEBUG]: Enter say_goodbye()
Goodbye!
复制代码

好,小A是个毕业生,他是这样实现的。

def say_hello():
    print "[DEBUG]: enter say_hello()"
    print "hello!"

def say_goodbye():
    print "[DEBUG]: enter say_goodbye()"
    print "hello!"

if __name__ == '__main__':
    say_hello()
    say_goodbye()
复制代码

很low吧? 嗯是的;

小B工作有一段时间了,他告诉小A可以这样写;

def debug():
    import inspect
    caller_name = inspect.stack()[1][3]
    print "[DEBUG]: enter {}()".format(caller_name)   

def say_hello():
    debug()
    print "hello!"

def say_goodbye():
    debug()
    print "goodbye!"

if __name__ == '__main__':
    say_hello()
    say_goodbye()
复制代码

这样处理好多了,但是呢,还是有问题,因为每个业务函数都需要调用一下debug()函数,而且如果以后说某个函数不能使用debug函数,岂不是gg了?

这时候,就需要装饰器了;

装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象;有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码并继续重用;
复制代码

如何使用装饰器

原始版本

def debug(func):
    def wrapper():
        print "[DEBUG]: enter {}()".format(func.__name__)
        return func()
    return wrapper

@debug
def say_hello():
    print "hello!"
复制代码

这是最简单的装饰器,但是有一个问题,如果被装饰的函数需要传入参数,那么这个装饰器就坏了。因为返回的函数并不能接受参数,可以指定装饰器函数wrapper接受和原函数一样的参数,比如:

def debug(func):
    def wrapper(something):  # 指定一毛一样的参数
        print "[DEBUG]: enter {}()".format(func.__name__)
        return func(something)
    return wrapper  # 返回包装过函数

@debug
def say(something):
    print "hello {}!".format(something)
复制代码

这样就解决了一个问题,但又多了N个问题;

因为函数有千千万,只管自己的函数,别人的函数参数是什么样子,鬼知道?还好Python提供了可变参数*args和关键字参数**kwargs,有了这两个参数,装饰器就可以用于任意目标函数了;

def debug(func):
    def wrapper(*args, **kwargs):  # 指定宇宙无敌参数
        print "[DEBUG]: enter {}()".format(func.__name__)
        print 'Prepare and say...',
        return func(*args, **kwargs)
    return wrapper  # 返回

@debug
def say(something):
    print "hello {}!".format(something)
    
# @debug的意思是,执行debug函数,而传入的参数就是下方紧接的sya函数;
复制代码

小结

1)装饰器的作用就是为已经存在的函数或对象添加额外的功能

2)闭包函数的必要条件:

  • 闭包函数必须返回一个函数对象
  • 闭包函数返回的那个函数必须引用外部变量(一般不能是全局变量)

3)生成器是一个返回迭代器的函数,只能用于迭代操作,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行;

关注下面的标签,发现更多相似文章
评论