iOS 开发:『Blocks』详尽总结 (二)底层原理

4,203 阅读19分钟

文中 Demo 地址:传送门

本文用来介绍 iOS 开发中 『Blocks』的底层原理。我将通过 Blocks 由 OC 转变的 C++ 源码来一步步解析 Blocks 的底层原理。

通过本文您将了解到:

  1. Blocks 的实质是什么?
  2. Block 截获局部变量和特殊区域变量
  3. Block 的存储区域
  4. Block 的循环引用

1. Blocks 的实质是什么?

在第一篇中我们讲解了 Blocks 的基本使用,也知道了 Blocks 是 带有局部变量的匿名函数。但是 Block  的实质究竟是什么呢?类型?变量?还是什么黑科技?

要想了解 Block 的本质,就需要从 Block 对应的 C++ 源码来入手。

下面我们通过一步步的源码剖析来了解 Block 的本质。

1.1 Blocks 由 OC 转 C++ 源码方法

  1. 在项目中添加 blocks.m 文件,并写好 block 的相关代码。
  2. 打开『终端』,执行 cd XXX/XXX 命令,其中 XXX/XXX 为 block.m 所在的目录。
  3. 继续执行clang -rewrite-objc block.m
  4. 执行完命令之后,block.m 所在目录下就会生成一个 block.cpp 文件,这就是我们需要的 block 相关的 C++ 源码。

1.2 Blocks 源码概览

下面我们删除掉 block.m 其他无关的代码,只保留 blocks 相关的代码,可以得到如下结果。

  • 转换前 OC 代码:
int main () {
    void (^myBlock)(void) = ^{
        printf("myBlock\n");
    };

    myBlock();

    return 0;
}
  • 转换后 C++ 源码:
/* 包含 Block 实际函数指针的结构体 */
struct __block_impl {
    void *isa;
    int Flags;               
    int Reserved;        // 今后版本升级所需的区域大小
    void *FuncPtr;      // 函数指针
};

/* Block 结构体 */
struct __main_block_impl_0 {
    // impl:Block 的实际函数指针,指向包含 Block 主体部分的 __main_block_func_0 结构体
    struct __block_impl impl;
    // Desc:Desc 指针,指向包含 Block 附加信息的 __main_block_desc_0() 结构体
    struct __main_block_desc_0* Desc;
    // __main_block_impl_0:Block 构造函数
    __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
        impl.isa = &_NSConcreteStackBlock;
        impl.Flags = flags;
        impl.FuncPtr = fp;
        Desc = desc;
    }
};

/* Block 主体部分结构体 */
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
    printf("myBlock\n");
}

/* Block 附加信息结构体:包含今后版本升级所需区域大小,Block 的大小*/
static struct __main_block_desc_0 {
    size_t reserved;        // 今后版本升级所需区域大小
    size_t Block_size;    // Block 大小
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};

/* main 函数 */
int main () {
    void (*myBlock)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA));
    ((void (*)(__block_impl *))((__block_impl *)myBlock)->FuncPtr)((__block_impl *)myBlock);

    return 0;
}

下面我们一步步来拆解转换后的源码。

1.3 Block 结构体

我们先来看看 __main_block_impl_0 结构体( Block 结构体)

/* Block 结构体 */
struct __main_block_impl_0 {
    // impl:Block 的实际函数指针,指向包含 Block 主体部分的 __main_block_func_0 结构体
    struct __block_impl impl;
    // Desc:Desc 指针,指向包含 Block 附加信息的 __main_block_desc_0() 结构体
    struct __main_block_desc_0* Desc;
    // __main_block_impl_0:Block 构造函数
    __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
        impl.isa = &_NSConcreteStackBlock;
        impl.Flags = flags;
        impl.FuncPtr = fp;
        Desc = desc;
    }
};

从上边我们可以看出,__main_block_impl_0 结构体(Block 结构体)包含了三个部分:

  1. 成员变量 impl;
  2. 成员变量 Desc 指针;
  3. __main_block_impl_0 构造函数。

我们先来把这几个部分剖析一下。

1.3.1 struct __block_impl impl 说明

第一部分 impl 是 __block_impl 结构体类型的成员变量。__block_impl 包含了 Block 实际函数指针 FuncPtrFuncPtr 指针指向 Block 的主体部分,也就是 Block 对应 OC 代码中的 ^{ printf("myBlock\n"); }; 部分。还包含了标志位 Flags,今后版本升级所需的区域大小  Reserved__block_impl 结构体的实例指针 isa

/* 包含 Block 实际函数指针的结构体 */
struct __block_impl {
    void *isa;               // 用于保存 Block 结构体的实例指针
    int Flags;               // 标志位
    int Reserved;        // 今后版本升级所需的区域大小
    void *FuncPtr;      // 函数指针
};

1.3.2 struct __main_block_desc_0* Desc 说明

第二部分 Desc 是指向的是 __main_block_desc_0 类型的结构体的指针型成员变量,__main_block_desc_0 结构体用来描述该 Block 的相关附加信息:

  1. 今后版本升级所需区域大小: reserved 变量。
  2. Block 大小:Block_size 变量。
/* Block 附加信息结构体:包含今后版本升级所需区域大小,Block 的大小*/
static struct __main_block_desc_0 {
    size_t reserved;      // 今后版本升级所需区域大小
    size_t Block_size;  // Block 大小
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};

1.3.3 __main_block_impl_0 构造函数说明

第三部分是 __main_block_impl_0 结构体(Block 结构体) 的构造函数,负责初始化 __main_block_impl_0 结构体(Block 结构体) 的成员变量。

__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
}

关于结构体构造函数中对各个成员变量的赋值,我们需要先来看看 main() 函数中,对该构造函数的调用。

  void (*myBlock)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA));

我们可以把上面的代码稍微转换一下,去掉不同类型之间的转换,使之简洁一点:

struct __main_block_impl_0 temp = __main_block_impl_0(__main_block_func_0, &__main_block_desc_0_DATA);
struct __main_block_impl_0 *myBlock = &temp;

这样,就容易看懂了。该代码将通过 __main_block_impl_0 构造函数,生成的 __main_block_impl_0 结构体(Block 结构体)类型实例的指针,赋值给 __main_block_impl_0 结构体(Block 结构体)类型的指针变量 myBlock

可以看到, 调用 __main_block_impl_0 构造函数的时候,传入了两个参数。

  1. 第一个参数:__main_block_func_0。     - 其实就是 Block 对应的主体部分,可以看到下面关于 __main_block_func_0 结构体的定义 ,和 OC 代码中 ^{ printf("myBlock\n"); }; 部分具有相同的表达式。     - 这里参数中的 __cself 是指向 Block 的值的指针变量,相当于 OC 中的 self。 
    /* Block 主体部分结构体 */
    static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
        printf("myBlock\n");
    }
  1. 第二个参数:__main_block_desc_0_DATA__main_block_desc_0_DATA 包含该 Block 的相关信息。 我们再来结合之前的 __main_block_impl_0 结构体定义。

    • __main_block_impl_0 结构体(Block 结构体)可以表述为:
       struct __main_block_impl_0 {
            void *isa;               // 用于保存 Block 结构体的实例指针
           int Flags;               // 标志位
           int Reserved;        // 今后版本升级所需的区域大小
           void *FuncPtr;      // 函数指针
           struct __main_block_desc_0* Desc;      // Desc:Desc 指针
       };
    
    • __main_block_impl_0 构造函数可以表述为:
        impl.isa = &_NSConcreteStackBlock;    // isa 保存 Block 结构体实例
        impl.Flags = 0;        // 标志位赋值
        impl.FuncPtr = __main_block_func_0;    // FuncPtr 保存 Block 结构体的主体部分
        Desc = &__main_block_desc_0_DATA;    // Desc 保存 Block 结构体的附加信息
    

1.4 Block 实质总结

至此,Block 的实质就要真相大白了。

__main_block_impl_0 结构体(Block 结构体)相当于 Objective-C 类对象的结构体,isa 指针保存的是所属类的结构体的实例的指针。_NSConcreteStackBlock 相当于 Block 的结构体实例。对象 impl.isa = &_NSConcreteStackBlock; 语句中,将 Block 结构体的指针赋值给其成员变量 isa,相当于 Block 结构体的成员变量 保存了 Block 结构体的指针,这里和 Objective-C 中的对象处理方式是一致的。

 也就是说明: Block 的实质就是对象。  Block 跟其他所有的 NSObject 一样,都是对象。果不其然,万物皆对象,古人诚不欺我。


2. Block 截获局部变量和特殊区域变量

2.1 Blcok 截获局部变量的实质

回顾一下上篇文章讲解的例子:

// 使用 Blocks 截获局部变量值
- (void)useBlockInterceptLocalVariables {
    int a = 10, b = 20;

    void (^myLocalBlock)(void) = ^{
        printf("a = %d, b = %d\n",a, b);
    };

    myLocalBlock();    // 输出结果:a = 10, b = 20

    a = 20;
    b = 30;

    myLocalBlock();    // 输出结果:a = 10, b = 20
}

从中可以看到,我们在第一次调用 myLocalBlock(); 之后已经重新给变量 a、变量 b 赋值了,但是第二次调用 myLocalBlock(); 的时候,使用的还是之前对应变量的值。

这是因为 Block 语法的表达式使用的是它之前声明的局部变量 a、变量 b。Blocks 中,Block 表达式截获所使用的局部变量的值,保存了该变量的瞬时值。所以在第二次执行 Block 表达式时,即使已经改变了局部变量 ab 的值,也不会影响 Block 表达式在执行时所保存的局部变量的瞬时值。  这就是 Blocks 变量截获局部变量值的特性。

可是,为什么 Blocks 变量使用的是局部变量的瞬时值,而不是局部变量的当前值呢?

我们来看一下对应的 C++ 代码:

struct __main_block_impl_0 {
    struct __block_impl impl;
    struct __main_block_desc_0* Desc;
    int a;
    int b;
    __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _a, int _b, int flags=0) : a(_a), b(_b) {
        impl.isa = &_NSConcreteStackBlock;
        impl.Flags = flags;
        impl.FuncPtr = fp;
        Desc = desc;
    }
};

static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
    int a = __cself->a; // bound by copy
    int b = __cself->b; // bound by copy

    printf("a = %d, b = %d\n",a, b);
}

static struct __main_block_desc_0 {
    size_t reserved;
    size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};

int main () {
    int a = 10, b = 20;

    void (*myLocalBlock)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, a, b));
    ((void (*)(__block_impl *))((__block_impl *)myLocalBlock)->FuncPtr)((__block_impl *)myLocalBlock);

    a = 20;
    b = 30;

    ((void (*)(__block_impl *))((__block_impl *)myLocalBlock)->FuncPtr)((__block_impl *)myLocalBlock);
}
  1. 可以看到 __main_block_impl_0 结构体(Block 结构体)中多了两个成员变量 ab,这两个变量就是 Block 截获的局部变量。 ab 的值来自与 __main_block_impl_0 构造函数中传入的值。

    struct __main_block_impl_0 {
        struct __block_impl impl;
        struct __main_block_desc_0* Desc;
        int a;    // 增加的成员变量 a
        int b;    // 增加的成员变量 b
        __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _a, int _b, int flags=0) : a(_a), b(_b) {    
            impl.isa = &_NSConcreteStackBlock;
            impl.Flags = flags;
            impl.FuncPtr = fp;
            Desc = desc;
        }
    };
    
  2. 还可以看出 __main_block_func_0(保存 Block 主体部分的结构体)中,变量 ab 的值使用的 __cself 获取的值。 而 __cself->a__cself->b 是通过值传递的方式传入进来的,而不是通过指针传递。这也就说明了 ab 只是 Block 内部的变量,改变 Block 外部的局部变量值,并不能改变 Block 内部的变量值。

    static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
        int a = __cself->a; // bound by copy
        int b = __cself->b; // bound by copy
        printf("a = %d, b = %d\n",a, b);
    }
    

那么来总结一下:

在定义 Block 表达式的时候,局部变量使用**『值传递』**的方式传入 Block 结构体中,并保存为 Block 的成员变量。

而当外部局部变量发生变化的时候,Block 结构体内部对应的的成员变量的值并没有发生改变,所以无论调用几次,Block 表达式结果都没有发生改变。

如果在 Block 主体部分对外部局部变量进行修改呢?类似下面这样,是不是就可以将截获的外部局部变量修改了?

int a = 10, b = 20;

void (^myLocalBlock)(void) = ^{
    a = 20;
    b = 30;

    printf("a = %d, b = %d\n",a, b);
};

myLocalBlock();   

很遗憾,编译直接报错了。

这种方式也走不通。

由此我们暂时可以得出一个结论:

被截获的自动变量的值是无法直接修改的。

可是,凭啥不能改变?如果我们非要改变呢,该咋整?

有一个办法,可以通过 __block 说明符修饰局部变量。

2.2 使用 __block 说明符更改局部变量值

// 使用 __block 说明符修饰,更改局部变量值
- (void)useBlockQualifierChangeLocalVariables {
    __block int a = 10, b = 20;

    void (^myLocalBlock)(void) = ^{
        a = 20;
        b = 30;

        printf("a = %d, b = %d\n",a, b);    // 输出结果:a = 20, b = 30
    };

    myLocalBlock();
}

从中我们可以发现:通过 __block 修饰的局部变量,可以在 Block 的主体部分中改变值。

我们来转换下源码,分析一下:

struct __Block_byref_a_0 {
    void *__isa;
    __Block_byref_a_0 *__forwarding;
    int __flags;
    int __size;
    int a;
};

struct __Block_byref_b_1 {
    void *__isa;
    __Block_byref_b_1 *__forwarding;
    int __flags;
    int __size;
    int b;
};

struct __main_block_impl_0 {
    struct __block_impl impl;
    struct __main_block_desc_0* Desc;
    __Block_byref_a_0 *a; // by ref
    __Block_byref_b_1 *b; // by ref
    __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, __Block_byref_a_0 *_a, __Block_byref_b_1 *_b, int flags=0) : a(_a->__forwarding), b(_b->__forwarding) {
        impl.isa = &_NSConcreteStackBlock;
        impl.Flags = flags;
        impl.FuncPtr = fp;
        Desc = desc;
    }
};

static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
    __Block_byref_a_0 *a = __cself->a; // bound by ref
    __Block_byref_b_1 *b = __cself->b; // bound by ref

    (a->__forwarding->a) = 20;
    (b->__forwarding->b) = 30;

    printf("a = %d, b = %d\n",(a->__forwarding->a), (b->__forwarding->b));
}

static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {_Block_object_assign((void*)&dst->a, (void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);_Block_object_assign((void*)&dst->b, (void*)src->b, 8/*BLOCK_FIELD_IS_BYREF*/);}

static void __main_block_dispose_0(struct __main_block_impl_0*src) {_Block_object_dispose((void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);_Block_object_dispose((void*)src->b, 8/*BLOCK_FIELD_IS_BYREF*/);}

static struct __main_block_desc_0 {
    size_t reserved;
    size_t Block_size;
    void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
    void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};

int main() {
    __attribute__((__blocks__(byref))) __Block_byref_a_0 a = {(void*)0,(__Block_byref_a_0 *)&a, 0, sizeof(__Block_byref_a_0), 10};
    __Block_byref_b_1 b = {(void*)0,(__Block_byref_b_1 *)&b, 0, sizeof(__Block_byref_b_1), 20};

    void (*myLocalBlock)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, (__Block_byref_a_0 *)&a, (__Block_byref_b_1 *)&b, 570425344));
    ((void (*)(__block_impl *))((__block_impl *)myLocalBlock)->FuncPtr)((__block_impl *)myLocalBlock);

    return 0;
}

可以看到,只是加上了一个 __block,代码量就增加了很多。

我们从 __main_block_impl_0 开始说起:

struct __main_block_impl_0 {
    struct __block_impl impl;
    struct __main_block_desc_0* Desc;
    __Block_byref_a_0 *a; // by ref
    __Block_byref_b_1 *b; // by ref
    __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, __Block_byref_a_0 *_a, __Block_byref_b_1 *_b, int flags=0) : a(_a->__forwarding), b(_b->__forwarding) {
        impl.isa = &_NSConcreteStackBlock;
        impl.Flags = flags;
        impl.FuncPtr = fp;
        Desc = desc;
    }
};

我们在 __main_block_impl_0 结构体中可以看到: 原 OC 代码中,被 __block 修饰的局部变量 __block int a__block int b 分别变成了 __Block_byref_a_0__Block_byref_b_1 类型的结构体指针 a、结构体指针 b。这里使用结构体指针 a 、结构体指针 b 说明 _Block_byref_a_0__Block_byref_b_1 类型的结构体并不在 __main_block_impl_0 结构体中,而只是通过指针的形式引用,这是为了可以在多个不同的 Block 中使用 __block 修饰的变量。

__Block_byref_a_0__Block_byref_b_1 类型的结构体声明如下:


struct __Block_byref_a_0 {
    void *__isa;
    __Block_byref_a_0 *__forwarding;
    int __flags;
    int __size;
    int a;
};

struct __Block_byref_b_1 {
    void *__isa;
    __Block_byref_b_1 *__forwarding;
    int __flags;
    int __size;
    int b;
};

拿第一个 __Block_byref_a_0 结构体定义来说明,__Block_byref_a_0 有 5 个部分:

  1. __isa:标识对象类的 isa 实例变量
  2. __forwarding:传入变量的地址
  3. __flags:标志位
  4. __size:结构体大小
  5. a:存放实变量 a 实际的值,相当于原局部变量的成员变量(和之前不加__block修饰符的时候一致)。

再来看一下 main() 函数中,__block int a__block int b 的赋值情况。

顺便把代码整理一下,使之简易一点:

__Block_byref_a_0 a = {
    (void*)0,
    (__Block_byref_a_0 *)&a, 
    0, 
    sizeof(__Block_byref_a_0), 
    10
};

__Block_byref_b_1 b = {
    0,
    &b, 
    0, 
    sizeof(__Block_byref_b_1), 
    20
};

还是拿第一个 __Block_byref_a_0 a 的赋值来说明。

可以看到 __isa 指针值传空,__forwarding 指向了局部变量 a 本身的地址,__flags 分配了 0,__size 为结构体的大小,a 赋值为 10。下图用来说明 __forwarding 指针的指向情况。

这下,我们知道 __forwarding 其实就是局部变量 a 本身的地址,那么我们就可以通过 __forwarding 指针来访问局部变量,同时也能对其进行修改了。

来看一下 Block 主体部分对应的 __main_block_func_0 结构体来验证一下。

static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
    __Block_byref_a_0 *a = __cself->a; // bound by ref
    __Block_byref_b_1 *b = __cself->b; // bound by ref

    (a->__forwarding->a) = 20;
    (b->__forwarding->b) = 30;

    printf("a = %d, b = %d\n",(a->__forwarding->a), (b->__forwarding->b));
}

可以看到 (a->__forwarding->a) = 20;(b->__forwarding->b) = 30; 是通过指针取值的方式来改变了局部变量的值。这也就解释了通过 __block 来修饰的变量,在 Block 的主体部分中改变值的原理其实是:通过**『指针传递』**的方式。

2.3 更改特殊区域变量值

除了通过 __block 说明符修饰的这种方式修改局部变量的值之外,还有一些特殊区域的变量,我们也可以在 Block 的内部将其修改。

这些特殊区域的变量包括:静态局部变量静态全局变量全局变量

我们还是通过 OC 代码和 C++ 源码来说明一下:

  • OC 代码:
int global_val = 10; // 全局变量
static int static_global_val = 20; // 静态全局变量

int main() {
    static int static_val = 30; // 静态局部变量

    void (^myLocalBlock)(void) = ^{
        global_val *= 1;
        static_global_val *= 2;
        static_val *= 3;

        printf("static_val = %d, static_global_val = %d, global_val = %d\n",static_val, static_global_val, static_val);
    };

    myLocalBlock();

    return 0;
}

  • C++ 代码:
int global_val = 10;
static int static_global_val = 20;

struct __main_block_impl_0 {
    struct __block_impl impl;
    struct __main_block_desc_0* Desc;
    int *static_val;
    __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int *_static_val, int flags=0) : static_val(_static_val) {
        impl.isa = &_NSConcreteStackBlock;
        impl.Flags = flags;
        impl.FuncPtr = fp;
        Desc = desc;
    }
};

static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
    int *static_val = __cself->static_val; // bound by copy
    global_val *= 1;
    static_global_val *= 2;
    (*static_val) *= 3;

    printf("static_val = %d, static_global_val = %d, global_val = %d\n",(*static_val), static_global_val, (*static_val));
}

static struct __main_block_desc_0 {
    size_t reserved;
    size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};

int main() {
    static int static_val = 30;

    void (*myLocalBlock)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, &static_val));
    ((void (*)(__block_impl *))((__block_impl *)myLocalBlock)->FuncPtr)((__block_impl *)myLocalBlock);

    return 0;

}

从中可以看到:

在 __main_block_impl_0 结构体中,将静态局部变量 static_val 以指针的形式添加为成员变量,而静态全局变量 static_global_val、全局变量 global_val 并没有添加为成员变量。

int global_val = 10;
static int static_global_val = 20;

struct __main_block_impl_0 {
    struct __block_impl impl;
    struct __main_block_desc_0* Desc;
    int *static_val;
    __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int *_static_val, int flags=0) : static_val(_static_val) {
        impl.isa = &_NSConcreteStackBlock;
        impl.Flags = flags;
        impl.FuncPtr = fp;
        Desc = desc;
    }
};

再来看一下 Block 主体部分对应的 __main_block_func_0 结构体部分。静态全局变量 static_global_val、全局变量 global_val 是直接访问的,而静态局部变量 static_val 则是通过『指针传递』的方式进行访问和赋值。

static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
    int *static_val = __cself->static_val; // bound by copy
    global_val *= 1;
    static_global_val *= 2;
    (*static_val) *= 3;

    printf("static_val = %d, static_global_val = %d, global_val = %d\n",(*static_val), static_global_val, (*static_val));
}

3. Block 的存储区域

通过之前对 Block 本质的探索,我们知道了 Block 的本质是 Objective-C 对象。通过上述代码中 impl.isa = &_NSConcreteStackBlock;,可以知道该 Block 的类名为 NSConcreteStackBlock,根据名称可以看出,该 Block 是存于栈区中的。而与之相关的,还有 _NSConcreteGlobalBlock_NSConcreteMallocBlock

3.1 _NSConcreteGlobalBlock

在以下两种情况下使用 Block 的时候,Block 为 NSConcreteGlobalBlock 类对象。

  1. 记述全局变量的地方,使用 Block 语法时;
  2. Block 语法的表达式中没有截获的自动变量时。

NSConcreteGlobalBlock 类的 Block 存储在**『程序的数据区域』**。因为存放在程序的数据区域,所以即使在变量的作用域外,也可以通过指针安全的使用。

  • 记述全局变量的地方,使用 Block 语法示例代码:
void (^myGlobalBlock)(void) = ^{
    printf("GlobalBlock\n");
};

int main() {
    myGlobalBlock();

    return 0;
}

通过对应 C++ 源码,我们可以发现:Block 结构体的成员变量 isa 赋值为:impl.isa = &_NSConcreteGlobalBlock;,说明该 Block 为 NSConcreteGlobalBlock 类对象。

3.2 _NSConcreteStackBlock

除了 3.1 _NSConcreteGlobalBlock 中提到的两种情形,其他情形下创建的 Block 都是 NSConcreteStackBlock 对象,平常接触的 Block 大多属于 NSConcreteStackBlock 对象。

NSConcreteStackBlock 类的 Block 存储在『栈区』的。如果其所属的变量作用域结束,则该 Block 就会被废弃。如果 Block 使用了 __block 变量,则当 __block 变量的作用域结束,则 __block 变量同样被废弃。

3.3 _NSConcreteMallocBlock

为了解决栈区上的 Block 在变量作用域结束被废弃这一问题,Block 提供了 『复制』 功能。可以将 Block 对象和 __block 变量从栈区复制到堆区上。当 Block 从栈区复制到堆区后,即使栈区上的变量作用域结束时,堆区上的 Block 和 __block 变量仍然可以继续存在,也可以继续使用。

此时,『堆区』上的 Block 为 NSConcreteMallocBlock 对象,Block 结构体的成员变量 isa 赋值为:impl.isa = &_NSConcreteMallocBlock;

那么,什么时候才会将 Block 从栈区复制到堆区呢?

这就涉及到了 Block 的自动拷贝和手动拷贝。

3.4 Block 的自动拷贝和手动拷贝

3.4.1 Block 的自动拷贝

在使用 ARC 时,大多数情形下编译器会自动进行判断,自动生成将 Block 从栈上复制到堆上的代码:

  1. 将 Block 作为函数返回值返回时,会自动拷贝;
  2. 向方法或函数的参数中传递 Block 时,使用以下两种方法的情况下,会进行自动拷贝,否则就需要手动拷贝:     1. Cocoa 框架的方法且方法名中含有 usingBlock 等时;
    2. Grand Central Dispatch(GCD) 的 API。

3.4.2 Block 的手动拷贝

我们可以通过『copy 实例方法(即 alloc / new / copy / mutableCopy)』来对 Block 进行手动拷贝。当我们不确定 Block 是否会被遗弃,需不需要拷贝的时候,直接使用 copy 实例方法即可,不会引起任何的问题。

关于 Block 不同类的拷贝效果总结如下:

Block 类 存储区域拷贝效果
 _NSConcreteStackBlock 栈区从栈拷贝到堆
 _NSConcreteGlobalBlock 程序的数据区域不做改变
 _NSConcreteMallocBlock 堆区引用计数增加

3.5 __block 变量的拷贝

在使用 __block 变量的 Block 从栈复制到堆上时,__block 变量也会受到如下影响:

__block 变量的配置存储区域Block 从栈复制到堆时的影响
堆区从栈复制到堆,并被 Block 所持有
栈区被 Block 所持有

当然,如果不再有 Block 引用该 __block 变量,那么 __block 变量也会被废除。


4. Block 的循环引用

从上文 2. Block 截获局部变量和特殊区域变量 中我们知道 Block 会对引用的局部变量进行持有。同样,如果 Block 也会对引用的对象进行持有(引用计数 + 1),从而会导致相互持有,引起循环引用。

/* —————— retainCycleBlcok.m —————— */   
#import <Foundation/Foundation.h>
#import "Person.h"

int main() {
    Person *person = [[Person alloc] init];
    person.blk = ^{
        NSLog(@"%@",person);
    };

    return 0;
}


/* —————— Person.h —————— */ 
#import <Foundation/Foundation.h>

typedef void(^myBlock)(void);

@interface Person : NSObject
@property (nonatomic, copy) myBlock blk;
@end


/* —————— Person.m —————— */ 
#import "Person.h"

@implementation Person    

@end

我们将 retainCycleBlcok.m 转换为 C++ 代码来看一下:

节选部分 C++ 代码:

struct __main_block_impl_0 {
    struct __block_impl impl;
    struct __main_block_desc_0* Desc;
    Person *person;
    __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, Person *_person, int flags=0) : person(_person) {
        impl.isa = &_NSConcreteStackBlock;
        impl.Flags = flags;
        impl.FuncPtr = fp;
        Desc = desc;
    }
};

static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
    Person *person = __cself->person; // bound by copy

    NSLog((NSString *)&__NSConstantStringImpl__var_folders_ct_0dyw1pvj6k16t5z8t0j0_ghw0000gn_T_retainCycleBlcok_8957e0_mi_0,person);
}

可以看到 __main_block_impl_0 结构体中增加了成员变量 person,同时 __main_block_func_0 结构体中也使用了 __cself->person

这样就导致了:person 持有成员变量 myBlock blk,而 blk 也同时持有成员变量 person,就造成了循环引用问题。

那么,如何来解决这个问题呢?

4.1 ARC 下,通过 __weak 修饰符来消除循环引用

在 ARC 下,可声明附有 __weak 修饰符的变量,并将对象赋值使用。

int main() {
    Person *person = [[Person alloc] init];
    __weak typeof(person) weakPerson = person;

    person.blk = ^{
        NSLog(@"%@",weakPerson);
    };

    return 0;
}

这样就可以解决循环引用的问题。我们再来转换为 C++ 代码来看看。

这里需要改下转换 C++ 指令,因为使用原指令会报错:error: cannot create __weak reference because the current deployment target does not support weak references

这里需要使用 clang -rewrite-objc -fobjc-arc -stdlib=libc++ -mmacosx-version-min=10.7 -fobjc-runtime=macosx-10.7 -Wno-deprecated-declarations retainCycleBlcok.m 命令来转换。

参考链接:How to use __weak reference in clang?

使用 __weak 修饰后的 Block 示例代码中,节选的部分 C++ 代码:

struct __main_block_impl_0 {
    struct __block_impl impl;
    struct __main_block_desc_0* Desc;
    Person *__weak weakPerson;
    __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, Person *__weak _weakPerson, int flags=0) : weakPerson(_weakPerson) {
        impl.isa = &_NSConcreteStackBlock;
        impl.Flags = flags;
        impl.FuncPtr = fp;
        Desc = desc;
    }
};

static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
    Person *__weak weakPerson = __cself->weakPerson; // bound by copy

    NSLog((NSString *)&__NSConstantStringImpl__var_folders_ct_0dyw1pvj6k16t5z8t0j0_ghw0000gn_T_retainCycleBlcok_447367_mi_0,weakPerson);
}

可以看到,__main_block_impl_0 使用过了 __weak 对成员变量 person 进行弱引用。

这样,person 持有成员变量 myBlock blk,而 blk 对 person 进行弱引用,从而就消除了循环引用。

4.2 MRC 下,通过 __block 修饰符来消除循环引用

MRC 下,是不支持 __weak 修饰符的。我们可以通过 __block 来消除循环引用。

int main() {
    Person *person = [[Person alloc] init];
    __block typeof(person) blockPerson = person;

    person.blk = ^{
        NSLog(@"%@", blockPerson);
    };

    return 0;
}

使用 clang -rewrite-objc -fno-objc-arc -stdlib=libc++ -mmacosx-version-min=10.7 -fobjc-runtime=macosx-10.7 -Wno-deprecated-declarations retainCycleBlcok.m 命令来转换为 C++ 代码。

使用 __block 修饰后的 Block 示例代码中,节选的部分 C++ 代码:

struct __main_block_impl_0 {
    struct __block_impl impl;
    struct __main_block_desc_0* Desc;
    __Block_byref_blockPerson_0 *blockPerson; // by ref
    __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, __Block_byref_blockPerson_0 *_blockPerson, int flags=0) : blockPerson(_blockPerson->__forwarding) {
        impl.isa = &_NSConcreteStackBlock;
        impl.Flags = flags;
        impl.FuncPtr = fp;
        Desc = desc;
    }
};

static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
    __Block_byref_blockPerson_0 *blockPerson = __cself->blockPerson; // bound by ref

    NSLog((NSString *)&__NSConstantStringImpl__var_folders_ct_0dyw1pvj6k16t5z8t0j0_ghw0000gn_T_retainCycleBlcok_536cd4_mi_0,(blockPerson->__forwarding->blockPerson));
}

可以看到,通过 __block 引用的 blockPerson,生成了 __Block_byref_blockPerson_0 结构体指针。这里通过指针的方式来访问 person,而没有对 person 进行强引用,所以不会造成循环引用。


参考资料


至此,Blocks 相关内容已经全部总结完毕,前前后后大概花费了差不多三周的时间。原本只是想简单写一下 Blocks 的基本应用,写着写着就去翻了下 『Objective-C 高级编程 iOS 与OS X 多线程和内存管理 』中关于 Block 的篇章。也借鉴了大佬关于这本书中对于 Blocks 的理解。然后就有了这篇关于 Blocks 的底层原理部分。

希望大家能够喜欢。