阅读 45

Influx Sql系列教程九:query数据查询基本篇二

前面一篇介绍了influxdb中基本的查询操作,在结尾处提到了如果我们希望对查询的结果进行分组,排序,分页时,应该怎么操作,接下来我们看一下上面几个场景的支持

在开始本文之前,建议先阅读上篇博文: 190813-Influx Sql系列教程八:query数据查询基本篇

0. 数据准备

在开始查询之前,先看一下我们准备的数据,其中name,phone为tag, age,blog,id为field

> select * from yhh
name: yhh
time                age blog                 id name phone
----                --- ----                 -- ---- -----
1563889538654374538 26  http://blog.hhui.top 10 一灰灰
1563889547738266214 30  http://blog.hhui.top 11 一灰灰
1563889704754695002 30  http://blog.hhui.top 11 一灰灰2
1563889723440000821 30  http://blog.hhui.top 11 一灰灰3 110
> show tag keys from yhh
name: yhh
tagKey
------
name
phone
复制代码

1. 分组查询

和sql语法一样,influxdb sql的分组也是使用group by语句,其定义如下

SELECT_clause FROM_clause [WHERE_clause] GROUP BY [* | <tag_key>[,<tag_key]]
复制代码

a. group by tag

从上面的定义中,有一点需要特别强调,用来分组的必须是tag,也就是说对于influxdb而言,不支持根据field进行分组

一个实际的演示如下:

> select * from yhh group by phone
name: yhh
tags: phone=
time                age blog                 id name
----                --- ----                 -- ----
1563889538654374538 26  http://blog.hhui.top 10 一灰灰
1563889547738266214 30  http://blog.hhui.top 11 一灰灰
1563889704754695002 30  http://blog.hhui.top 11 一灰灰2

name: yhh
tags: phone=110
time                age blog                 id name
----                --- ----                 -- ----
1563889723440000821 30  http://blog.hhui.top 11 一灰灰3
复制代码

注意上面的输出结果,比较有意思,分成了两个结构段落,且可以输出完整的数据;而mysql的分组查询条件中一般需要带上分组key,然后实现一些数据上的聚合查询

如果我的分组中,使用field进行分组查询,会怎样?报错么?

> select * from yhh group by age
name: yhh
tags: age=
time                age blog                 id name phone
----                --- ----                 -- ---- -----
1563889538654374538 26  http://blog.hhui.top 10 一灰灰
1563889547738266214 30  http://blog.hhui.top 11 一灰灰
1563889704754695002 30  http://blog.hhui.top 11 一灰灰2
1563889723440000821 30  http://blog.hhui.top 11 一灰灰3 110
复制代码

从上面的case中可以看出,虽然执行了,但是返回的结果并不是我们预期的。

b. group by *

另外一个与一般SQL语法不一样的是group by 后面可以跟上*,表示根据所有的tag进行分组,一个测试如下

> select * from yhh group by *
name: yhh
tags: name=一灰灰, phone=
time                age blog                 id
----                --- ----                 --
1563889538654374538 26  http://blog.hhui.top 10
1563889547738266214 30  http://blog.hhui.top 11

name: yhh
tags: name=一灰灰2, phone=
time                age blog                 id
----                --- ----                 --
1563889704754695002 30  http://blog.hhui.top 11

name: yhh
tags: name=一灰灰3, phone=110
time                age blog                 id
----                --- ----                 --
1563889723440000821 30  http://blog.hhui.top 11
>
复制代码

c. group by time

除了上面的根据tag进行分组之外,还有一个更高级的特性,根据时间来分组,这个时间还支持一些简单的函数操作

定义如下

SELECT <function>(<field_key>) FROM_clause WHERE <time_range> GROUP BY time(<time_interval>),[tag_key] [fill(<fill_option>)]
复制代码

我们知道influxdb的一个重要应用场景就是监控的记录,在监控面板上经常会有的就是根据时间进行聚合,比如查询某个服务每分钟的异常数,qps, rt等

下面给出一个简单的使用case

# 为了显示方便,将数据的时间戳改成日期方式展示
> precision rfc3339
> select * from yhh
name: yhh
time                           age blog                 id name phone
----                           --- ----                 -- ---- -----
2019-07-23T13:45:38.654374538Z 26  http://blog.hhui.top 10 一灰灰
2019-07-23T13:45:47.738266214Z 30  http://blog.hhui.top 11 一灰灰
2019-07-23T13:48:24.754695002Z 30  http://blog.hhui.top 11 一灰灰2
2019-07-23T13:48:43.440000821Z 30  http://blog.hhui.top 11 一灰灰3 110
> select count(*) from yhh where time>'2019-07-23T13:44:38.654374538Z' and time<'2019-07-23T13:50:43.440000821Z'  GROUP BY time(2m)
name: yhh
time                 count_age count_blog count_id
----                 --------- ---------- --------
2019-07-23T13:44:00Z 2         2          2
2019-07-23T13:46:00Z 0         0          0
2019-07-23T13:48:00Z 2         2          2
2019-07-23T13:50:00Z 0         0          0
复制代码

在上面的查询语句中,有几个地方需要说明一下

  • select后面跟上的是单个or多个field的聚合操作,根据时间进行分组时,不允许查询具体的field值,否则会有下面的错误提示
    > select * from yhh where time>'2019-07-23T13:44:38.654374538Z' and time<'2019-07-23T13:50:43.440000821Z'  GROUP BY time(2m)
    ERR: GROUP BY requires at least one aggregate function
    复制代码
  • where条件限定查询的时间范围,否则会得到很多数据
  • group by time(2m) 表示每2分钟做一个分组, group by time(2s)则表示每2s做一个分组

2. 排序

在influxdb中排序,只支持针对time进行排序,其他的field,tag(因为是string类型,也没法排)是不能进行排序的

语法比较简单,如下,根据时间倒序/升序

order by time desc/asc
复制代码

一个简单的实例如下

# 根据非time进行排序时,直接报错
> select * from yhh order by age
ERR: error parsing query: only ORDER BY time supported at this time
# 根据时间进行倒排
> select * from yhh order by time desc
name: yhh
time                           age blog                 id name phone
----                           --- ----                 -- ---- -----
2019-07-23T13:48:43.440000821Z 30  http://blog.hhui.top 11 一灰灰3 110
2019-07-23T13:48:24.754695002Z 30  http://blog.hhui.top 11 一灰灰2
2019-07-23T13:45:47.738266214Z 30  http://blog.hhui.top 11 一灰灰
2019-07-23T13:45:38.654374538Z 26  http://blog.hhui.top 10 一灰灰
>
复制代码

3. 查询限制

我们常见的分页就是limit语句,我们常见的limit语句为 limit page, size,可以实现分页;然而在influxdb中则不同,limit后面只能跟上一个数字,表示限定查询的最多条数

a. limit

N指定每次measurement返回的point个数

SELECT_clause [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] LIMIT <N>
复制代码

下满给出几个实际的case

> select * from yhh limit 2
name: yhh
time                           age blog                 id name phone
----                           --- ----                 -- ---- -----
2019-07-23T13:45:38.654374538Z 26  http://blog.hhui.top 10 一灰灰
2019-07-23T13:45:47.738266214Z 30  http://blog.hhui.top 11 一灰灰

# 分组之后,再限定查询条数
> select * from yhh group by "name" limit 1
name: yhh
tags: name=一灰灰
time                           age blog                 id phone
----                           --- ----                 -- -----
2019-07-23T13:45:38.654374538Z 26  http://blog.hhui.top 10

name: yhh
tags: name=一灰灰2
time                           age blog                 id phone
----                           --- ----                 -- -----
2019-07-23T13:48:24.754695002Z 30  http://blog.hhui.top 11

name: yhh
tags: name=一灰灰3
time                           age blog                 id phone
----                           --- ----                 -- -----
2019-07-23T13:48:43.440000821Z 30  http://blog.hhui.top 11 110
复制代码

b. slimit

N指定从指定measurement返回的series数

SELECT_clause [INTO_clause] FROM_clause [WHERE_clause] GROUP BY *[,time(<time_interval>)] [ORDER_BY_clause] SLIMIT <N>
复制代码

接下来演示下这个的使用姿势,首先准备插入几条数据,确保tag相同

> insert yhh,name=一灰灰,phone=110 blog="http://spring.hhui.top",age=14,id=14
> insert yhh,name=一灰灰,phone=110 blog="http://spring.hhui.top",age=15,id=15
> insert yhh,name=一灰灰,phone=110 blog="http://spring.hhui.top",age=16,id=16
> select * from yhh
name: yhh
time                           age blog                   id name phone
----                           --- ----                   -- ---- -----
2019-07-23T13:45:38.654374538Z 26  http://blog.hhui.top   10 一灰灰
2019-07-23T13:45:47.738266214Z 30  http://blog.hhui.top   11 一灰灰
2019-07-23T13:48:24.754695002Z 30  http://blog.hhui.top   11 一灰灰2
2019-07-23T13:48:43.440000821Z 30  http://blog.hhui.top   11 一灰灰3 110
2019-08-14T11:18:06.804162557Z 14  http://spring.hhui.top 14 一灰灰  110
2019-08-14T11:18:10.146588721Z 15  http://spring.hhui.top 15 一灰灰  110
2019-08-14T11:18:12.753413004Z 16  http://spring.hhui.top 16 一灰灰  110
> show series on test from yhh
key
---
yhh,name=一灰灰
yhh,name=一灰灰,phone=110
yhh,name=一灰灰2
yhh,name=一灰灰3,phone=110
复制代码

如下面的一个使用case

> select * from yhh group by * slimit 3
name: yhh
tags: name=一灰灰, phone=
time                           age blog                 id
----                           --- ----                 --
2019-07-23T13:45:38.654374538Z 26  http://blog.hhui.top 10
2019-07-23T13:45:47.738266214Z 30  http://blog.hhui.top 11

name: yhh
tags: name=一灰灰, phone=110
time                           age blog                   id
----                           --- ----                   --
2019-08-14T11:18:06.804162557Z 14  http://spring.hhui.top 14
2019-08-14T11:18:10.146588721Z 15  http://spring.hhui.top 15
2019-08-14T11:18:12.753413004Z 16  http://spring.hhui.top 16

name: yhh
tags: name=一灰灰2, phone=
time                           age blog                 id
----                           --- ----                 --
2019-07-23T13:48:24.754695002Z 30  http://blog.hhui.top 11

name: yhh
tags: name=一灰灰3, phone=110
time                           age blog                 id
----                           --- ----                 --
2019-07-23T13:48:43.440000821Z 30  http://blog.hhui.top 11
复制代码

说实话,这一块没看懂,根据官方的文档进行翻译的,没有get这个slimit的特点

4. 分页

上面只有point个数限制,但是分页怎么办?难道不支持么?

在influxdb中,有专门的offset来实现分页

SELECT_clause [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] LIMIT_clause OFFSET <N> [SLIMIT_clause]
复制代码

简单来讲,就是limit 条数 offset 偏移

使用实例

> select * from yhh
name: yhh
time                           age blog                   id name phone
----                           --- ----                   -- ---- -----
2019-07-23T13:45:38.654374538Z 26  http://blog.hhui.top   10 一灰灰
2019-07-23T13:45:47.738266214Z 30  http://blog.hhui.top   11 一灰灰
2019-07-23T13:48:24.754695002Z 30  http://blog.hhui.top   11 一灰灰2
2019-07-23T13:48:43.440000821Z 30  http://blog.hhui.top   11 一灰灰3 110
2019-08-14T11:18:06.804162557Z 14  http://spring.hhui.top 14 一灰灰  110
2019-08-14T11:18:10.146588721Z 15  http://spring.hhui.top 15 一灰灰  110
2019-08-14T11:18:12.753413004Z 16  http://spring.hhui.top 16 一灰灰  110
# 查询结果只有2条数据,从第三个开始(0开始计数)
> select * from yhh limit 2 offset 3
name: yhh
time                           age blog                   id name phone
----                           --- ----                   -- ---- -----
2019-07-23T13:48:43.440000821Z 30  http://blog.hhui.top   11 一灰灰3 110
2019-08-14T11:18:06.804162557Z 14  http://spring.hhui.top 14 一灰灰  110
> select * from yhh limit 2 offset 3
复制代码

5. 小结

本篇influxdb的查询篇主要介绍了sql中的三种常用case,分组,排序,分页;虽然使用姿势和我们常见的SQL大同小异,但是一些特殊点需要额外注意一下

  • 分组查询时,注意分组的key必须是time或者tag,分组查询可以返回完整的point
  • 排序,只支持根据时间进行排序,其他的字段都不支持
  • 分页,需要注意limit size offset startIndex和我们一般的使用case不同,它的两个参数分别表示查询的point个数,以及偏移量;而不是传统sql中的页和条数

II. 其他

0. 系列博文

参考博文

1. 一灰灰Blogliuyueyi.github.io/hexblog

一灰灰的个人博客,记录所有学习和工作中的博文,欢迎大家前去逛逛

2. 声明

尽信书则不如,已上内容,纯属一家之言,因个人能力有限,难免有疏漏和错误之处,如发现bug或者有更好的建议,欢迎批评指正,不吝感激

3. 扫描关注

一灰灰blog

image

关注下面的标签,发现更多相似文章
评论