阅读 1775

Koa的洋葱中间件,Redux的中间件,Axios的拦截器让你迷惑吗?实现一个精简版的就彻底搞懂了。

前言

前端中的库很多,开发这些库的作者会尽可能的覆盖到大家在业务中千奇百怪的需求,但是总有无法预料到的,所以优秀的库就需要提供一种机制,让开发者可以干预插件中间的一些环节,从而完成自己的一些需求。

本文将从koaaxiosvuexredux的实现来教你怎么编写属于自己的插件机制。

  • 对于新手来说:
    本文能让你搞明白神秘的插件和拦截器到底是什么东西。

  • 对于老手来说:
    在你写的开源框架中也加入拦截器或者插件机制,让它变得更加强大吧!

axios

首先我们模拟一个简单的axios,这里不涉及请求的逻辑,只是简单的返回一个Promise,可以通过config中的error参数控制Promise的状态。

axios的拦截器机制用流程图来表示其实就是这样的:

流程图

const axios = config => {
  if (config.error) {
    return Promise.reject({
      error: 'error in axios',
    });
  } else {
    return Promise.resolve({
      ...config,
      result: config.result,
    });
  }
};
复制代码

如果传入的config中有error参数,就返回一个rejected的promise,反之则返回resolved的promise。

先简单看一下axios官方提供的拦截器示例:

axios.interceptors.request.use(function (config) {
    // 在发送请求之前做些什么
    return config;
  }, function (error) {
    // 对请求错误做些什么
    return Promise.reject(error);
  });

// 添加响应拦截器
axios.interceptors.response.use(function (response) {
    // 对响应数据做点什么
    return response;
  }, function (error) {
    // 对响应错误做点什么
    return Promise.reject(error);
  });
复制代码

可以看出,不管是request还是response的拦截求,都会接受两个函数作为参数,一个是用来处理正常流程,一个是处理失败流程,这让人想到了什么?

没错,promise.then接受的同样也是这两个参数。

axios内部正是利用了promise的这个机制,把use传入的两个函数作为一个intercetpor,每一个intercetpor都有resolvedrejected两个方法。

// 把
axios.interceptors.response.use(func1, func2)

// 在内部存储为
{
    resolved: func1,
    rejected: func2
}
复制代码

接下来简单实现一下,这里我们简化一下,把axios.interceptor.request.use转为axios.useRequestInterceptor来简单实现:


// 先构造一个对象 存放拦截器
axios.interceptors = {
  request: [],
  response: [],
};

// 注册请求拦截器
axios.useRequestInterceptor = (resolved, rejected) => {
  axios.interceptors.request.push({ resolved, rejected });
};

// 注册响应拦截器
axios.useResponseInterceptor = (resolved, rejected) => {
  axios.interceptors.response.push({ resolved, rejected });
};

// 运行拦截器
axios.run = config => {
  const chain = [
    {
      resolved: axios,
      rejected: undefined,
    },
  ];

  // 把请求拦截器往数组头部推
  axios.interceptors.request.forEach(interceptor => {
    chain.unshift(interceptor);
  });

  // 把响应拦截器往数组尾部推
  axios.interceptors.response.forEach(interceptor => {
    chain.push(interceptor);
  });

  // 把config也包装成一个promise
  let promise = Promise.resolve(config);

  // 暴力while循环解忧愁 
  // 利用promise.then的能力递归执行所有的拦截器
  while (chain.length) {
    const { resolved, rejected } = chain.shift();
    promise = promise.then(resolved, rejected);
  }

  // 最后暴露给用户的就是响应拦截器处理过后的promise
  return promise;
};
复制代码

axios.run这个函数看运行时的机制,首先构造一个chain作为promise链,并且把正常的请求也就是我们的请求参数axios也构造为一个拦截器的结构,接下来

  • 把request的interceptor给unshift到chain顶部
  • 把response的interceptor给push到chain尾部

以这样一段调用代码为例:

// 请求拦截器1
axios.useRequestInterceptor(resolved1, rejected1);
// 请求拦截器2
axios.useRequestInterceptor(resolved2, rejected2);
// 响应拦截器1
axios.useResponseInterceptor(resolved1, rejected1);
// 响应拦截器
axios.useResponseInterceptor(resolved2, rejected2);
复制代码

这样子构造出来的promise链就是这样的chain结构:

[
    请求拦截器2// ↓config
    请求拦截器1// ↓config
    axios请求核心方法, // ↓response
    响应拦截器1, // ↓response
    响应拦截器// ↓response
]
复制代码

至于为什么requestInterceptor的顺序是反过来的,仔细看看代码就知道 XD。

有了这个chain之后,只需要一句简短的代码:

 let promise = Promise.resolve(config);

  while (chain.length) {
    const { resolved, rejected } = chain.shift();
    promise = promise.then(resolved, rejected);
  }

  return promise;
复制代码

promise就会把这个链从上而下的执行了。

以这样的一段测试代码为例:

axios.useRequestInterceptor(config => {
  return {
    ...config,
    extraParams1: 'extraParams1',
  };
});

axios.useRequestInterceptor(config => {
  return {
    ...config,
    extraParams2: 'extraParams2',
  };
});

axios.useResponseInterceptor(
  resp => {
    const {
      extraParams1,
      extraParams2,
      result: { code, message },
    } = resp;
    return `${extraParams1} ${extraParams2} ${message}`;
  },
  error => {
    console.log('error', error)
  },
);
复制代码
  1. 成功的调用

在成功的调用下输出 result1: extraParams1 extraParams2 message1

(async function() {
  const result = await axios.run({
    message: 'message1',
  });
  console.log('result1: ', result);
})();
复制代码
  1. 失败的调用
(async function() {
  const result = await axios.run({
    error: true,
  });
  console.log('result3: ', result);
})();
复制代码

在失败的调用下,则进入响应拦截器的rejected分支:

首先打印出拦截器定义的错误日志:
error { error: 'error in axios' }

然后由于失败的拦截器

error => {
  console.log('error', error)
},
复制代码

没有返回任何东西,打印出result3: undefined

可以看出,axios的拦截器是非常灵活的,可以在请求阶段任意的修改config,也可以在响应阶段对response做各种处理,这也是因为用户对于请求数据的需求就是非常灵活的,没有必要干涉用户的自由度。

vuex

vuex提供了一个api用来在action被调用前后插入一些逻辑:

vuex.vuejs.org/zh/api/#sub…

store.subscribeAction({
  before: (action, state) => {
    console.log(`before action ${action.type}`)
  },
  after: (action, state) => {
    console.log(`after action ${action.type}`)
  }
})
复制代码

其实这有点像AOP(面向切面编程)的编程思想。

在调用store.dispatch({ type: 'add' })的时候,会在执行前后打印出日志

before action add
add
after action add
复制代码

来简单实现一下:

import { Actions, ActionSubscribers, ActionSubscriber, ActionArguments } from './vuex.type';

class Vuex {
  state = {};

  action = {};

  _actionSubscribers = [];

  constructor({ state, action }) {
    this.state = state;
    this.action = action;
    this._actionSubscribers = [];
  }

  dispatch(action) {
    // action前置监听器
    this._actionSubscribers
      .forEach(sub => sub.before(action, this.state));

    const { type, payload } = action;
    
    // 执行action
    this.action[type](this.state, payload).then(() => {
       // action后置监听器
      this._actionSubscribers
        .forEach(sub => sub.after(action, this.state));
    });
  }

  subscribeAction(subscriber) {
    // 把监听者推进数组
    this._actionSubscribers.push(subscriber);
  }
}

const store = new Vuex({
  state: {
    count: 0,
  },
  action: {
    async add(state, payload) {
      state.count += payload;
    },
  },
});

store.subscribeAction({
  before: (action, state) => {
    console.log(`before action ${action.type}, before count is ${state.count}`);
  },
  after: (action, state) => {
    console.log(`after action ${action.type},  after count is ${state.count}`);
  },
});

store.dispatch({
  type: 'add',
  payload: 2,
});
复制代码

此时控制台会打印如下内容:

before action add, before count is 0
after action add, after count is 2
复制代码

轻松实现了日志功能。

当然Vuex在实现插件功能的时候,选择性的将 type payload 和 state暴露给外部,而不再提供进一步的修改能力,这也是框架内部的一种权衡,当然我们可以对state进行直接修改,但是不可避免的会得到Vuex内部的警告,因为在Vuex中,所有state的修改都应该通过mutations来进行,但是Vuex没有选择把commit也暴露出来,这也约束了插件的能力。

redux

想要理解redux中的中间件机制,需要先理解一个方法:compose

function compose(...funcs: Function[]) {
  return funcs.reduce((a, b) => (...args: any) => a(b(...args)))
}
复制代码

简单理解的话,就是compose(fn1, fn2, fn3) (...args) = > fn1(fn2(fn3(...args)))
它是一种高阶聚合函数,相当于把fn3先执行,然后把结果传给fn2再执行,再把结果交给fn1去执行。

有了这个前置知识,就可以很轻易的实现redux的中间件机制了。

虽然redux源码里写的很少,各种高阶函数各种柯里化,但是抽丝剥茧以后,redux中间件的机制可以用一句话来解释:

把dispatch这个方法不断用高阶函数包装,最后返回一个强化过后的dispatch

以logMiddleware为例,这个middleware接受原始的redux dispatch,返回的是

const typeLogMiddleware = (dispatch) => {
    // 返回的其实还是一个结构相同的dispatch,接受的参数也相同
    // 只是把原始的dispatch包在里面了而已。
    return ({type, ...args}) => {
        console.log(`type is ${type}`)
        return dispatch({type, ...args})
    }
}
复制代码

有了这个思路,就来实现这个mini-redux吧:

function compose(...funcs) {
    return funcs.reduce((a, b) => (...args) => a(b(...args)));
}

function createStore(reducer, middlewares) {
    let currentState;
    
    function dispatch(action) {
        currentState = reducer(currentState, action);
    }
    
    function getState() {
        return currentState;
    }
    // 初始化一个随意的dispatch,要求外部在type匹配不到的时候返回初始状态
    // 在这个dispatch后 currentState就有值了。
    dispatch({ type: 'INIT' });  
    
    let enhancedDispatch = dispatch;
    // 如果第二个参数传入了middlewares
    if (middlewares) {
        // 用compose把middlewares包装成一个函数
        // 让dis
        enhancedDispatch = compose(...middlewares)(dispatch);
    }  
    
    return {
        dispatch: enhancedDispatch,
        getState,
    };
}

复制代码

接着写两个中间件

// 使用

const otherDummyMiddleware = (dispatch) => {
    // 返回一个新的dispatch
    return (action) => {
        console.log(`type in dummy is ${type}`)
        return dispatch(action)
    }
}

// 这个dispatch其实是otherDummyMiddleware执行后返回otherDummyDispatch
const typeLogMiddleware = (dispatch) => {
    // 返回一个新的dispatch
    return ({type, ...args}) => {
        console.log(`type is ${type}`)
        return dispatch({type, ...args})
    }
}

// 中间件从右往左执行。
const counterStore = createStore(counterReducer, [typeLogMiddleware, otherDummyMiddleware])

console.log(counterStore.getState().count)
counterStore.dispatch({type: 'add', payload: 2})
console.log(counterStore.getState().count)

// 输出:
// 0
// type is add
// type in dummy is add
// 2
复制代码

koa

koa的洋葱模型想必各位都听说过,这种灵活的中间件机制也让koa变得非常强大,本文也会实现一个简单的洋葱中间件机制。参考(umi-request的中间件机制

洋葱圈

对应这张图来看,洋葱的每一个圈就是一个中间件,它即可以掌管请求进入,也可以掌管响应返回。

它和redux的中间件机制有点类似,本质上都是高阶函数的嵌套,外层的中间件嵌套着内层的中间件,这种机制的好处是可以自己控制中间件的能力(外层的中间件可以影响内层的请求和响应阶段,内层的中间件只能影响外层的响应阶段)

首先我们写出Koa这个类

class Koa {
    constructor() {
        this.middlewares = [];
    }
    use(middleware) {
        this.middlewares.push(middleware);
    }
    start({ req }) {
        const composed = composeMiddlewares(this.middlewares);
        const ctx = { req, res: undefined };
        return composed(ctx);
    }
}
复制代码

这里的use就是简单的把中间件推入中间件队列中,那核心就是怎样去把这些中间件组合起来了,下面看composeMiddlewares方法:

function composeMiddlewares(middlewares) {
    return function wrapMiddlewares(ctx) {
        // 记录当前运行的middleware的下标
        let index = -1;
        function dispatch(i) {
            // index向后移动
            index = i;
            
            // 找出数组中存放的相应的中间件
            const fn = middlewares[i];
            
            // 最后一个中间件调用next 也不会报错
            if (!fn) {
                return Promise.resolve();
            }
                
            return Promise.resolve(
                fn(
                    // 继续传递ctx
                    ctx, 
                    // next方法,允许进入下一个中间件。
                    () => dispatch(i + 1)
                )
            );
        }
        // 开始运行第一个中间件
        return dispatch(0);
    };
}
复制代码

简单来说 dispatch(n)对应着第n个中间件的执行,而dispatch(n)又拥有执行dispatch(n + 1)的权力,

所以在真正运行的时候,中间件并不是在平级的运行,而是嵌套的高阶函数:

dispatch(0)包含着dispatch(1),而dispatch(1)又包含着dispatch(2) 在这个模式下,我们很容易联想到try catch的机制,它可以catch住函数以及函数内部继续调用的函数的所有error

那么我们的第一个中间件就可以做一个错误处理中间件:

// 最外层 管控全局错误
app.use(async (ctx, next) => {
    try {
        // 这里的next包含了第二层以及第三层的运行
        await next();
    }
    catch (error) {
        console.log(`[koa error]: ${error.message}`);
    }
});  
复制代码

在这个错误处理中间件中,我们把next包裹在try catch中运行,调用了next后会进入第二层的中间件:

// 第二层 日志中间件
app.use(async (ctx, next) => {
    const { req } = ctx;
    console.log(`req is ${JSON.stringify(req)}`);
    await next();
    // next过后已经能拿到第三层写进ctx的数据了
    console.log(`res is ${JSON.stringify(ctx.res)}`);
});
复制代码

在第二层中间件的next调用后,进入第三层,业务逻辑处理中间件

// 第三层 核心服务中间件
// 在真实场景中 这一层一般用来构造真正需要返回的数据 写入ctx中
app.use(async (ctx, next) => {
    const { req } = ctx;
    console.log(`calculating the res of ${req}...`);
    const res = {
        code: 200,
        result: `req ${req} success`,
    };
    // 写入ctx
    ctx.res = res;
    await next();
});
复制代码

在这一层把res写入ctx后,函数出栈,又会回到第二层中间件的await next()后面

 console.log(`req is ${JSON.stringify(req)}`);
 await next();
 // <- 回到这里
 console.log(`res is ${JSON.stringify(ctx.res)}`);
复制代码

这时候日志中间件就可以拿到ctx.res的值了。

想要测试错误处理中间件 就在最后加入这个中间件

// 用来测试全局错误中间件
// 注释掉这一个中间件 服务才能正常响应
app.use(async (ctx, next) => {
    throw new Error('oops! error!');
});
复制代码

最后要调用启动函数:

app.start({ req: 'ssh' });
复制代码

控制台打印出结果:

req is "ssh"
calculating the res of ssh...
res is {"code":200,"result":"req ssh success"}
复制代码

总结

  1. axios 把用户注册的每个拦截器构造成一个promise.then所接受的参数,在运行时把所有的拦截器按照一个promise链的形式以此执行。
  • 在发送到服务端之前,config已经是请求拦截器处理过后的结果
  • 服务器响应结果后,response会经过响应拦截器,最后用户拿到的就是处理过后的结果了。
  1. vuex的实现最为简单,就是提供了两个回调函数,vuex内部在合适的时机去调用(我个人感觉大部分的库提供这样的机制也足够了)。
  2. redux的源码里写的最复杂最绕,它的中间件机制本质上就是用高阶函数不断的把dispatch包装再包装,形成套娃。本文实现的已经是精简了n倍以后的结果了,不过复杂的实现也是为了很多权衡和考量,Dan对于闭包和高阶函数的运用已经炉火纯青了,只是外人去看源码有点头秃...
  3. koa的洋葱模型实现的很精妙,和redux有相似之处,但是在源码理解和使用上个人感觉更优于redux的中间件。

中间件机制其实是非框架强相关的,请求库一样可以加入koa的洋葱中间件机制(如umi-request),不同的框架可能适合不同的中间件机制,这还是取决于你编写的框架想要解决什么问题,想给用户什么样的自由度。

希望看了这篇文章的你,能对于前端库中的中间件机制有进一步的了解,进而为你自己的前端库加入合适的中间件能力。

本文所写的代码都整理在这个仓库里了:
github.com/sl1673495/t…

代码是使用ts编写的,js版本的代码在js文件夹内,各位可以按自己的需求来看。

关注下面的标签,发现更多相似文章
评论