iOS load_images分析

190 阅读6分钟

前言

iOS开发中,我们经常会听到load方法,那么到底什么是load方法,它什么时候调用?

首先,我们先来看看官方给出的说明:

Discussion
The load message is sent to classes and categories that are both dynamically loaded and statically linked, but only if the newly loaded class or category implements a method that can respond.
The order of initialization is as follows:
1.All initializers in any framework you link to.
2.All +load methods in your image.(这个image指的就是二进制可执行文件)
3.All C++ static initializers and C/C++ __attribute__(constructor) functions in your image.
4.All initializers in frameworks that link to you.
In addition:
1.A class’s +load method is called after all of its superclasses’ +load methods.
2.A category +load method is called after the class’s own +load method.
In a custom implementation of load you can therefore safely message other unrelated classes from the same image, but any load methods implemented by those classes may not have run yet.

大致意思是:发送给类或者分类的load消息是同时动态加载和静态链接的,但是只有新加载的类或者分类实现了一个方法才能响应。初始化的顺序如下:

  1. 链接到的任何框架中的所有初始化程序
  2. 镜像文件中所有实现了load方法
  3. 镜像文件中所有的C++的静态初始化和C/C++构造器函数
  4. 链接到您的框架中的所有初始化程序 另外:
  5. 所有的superclassload执行完以后才会执行该子类的load
  6. 类中的load方法是先于category中的执行的

准备工作

下面我们实现一段代码来验证以下:

先一个TPerson的类:

@interface TPerson : NSObject
@property (nonatomic, copy) NSString *name;

- (void)sayHello;
+ (void)sayYo;

@end

#import "TPerson.h"

@implementation TPerson

+ (void)load {
    NSLog(@"类-load");
}

- (void)sayHello {
    NSLog(@"%s",__func__);
}

+ (void)sayYo {
    NSLog(@"%s",__func__);
}

@end

然后再实现一个分类:

#import "TPerson.h"

@interface TPerson (addition)

- (void)cate_instanceMethod;
+ (void)cate_classMethod;

@end

@implementation TPerson (addition)

+ (void)load {
    NSLog(@"分类-load");
}

- (void)cate_instanceMethod {
    NSLog(@"%s",__func__);
}

+ (void)cate_classMethod {
    NSLog(@"%s",__func__);
}
@end

运行程序,我们发现在main函数之前,类和分类中的load方法就调用了。那么load方法到底具体是在哪里被调用的呢?

load_images

分类的加载中,我们知道,实现了load方法的类就是非懒加载类,而非懒加载类的一些相关处理在load_images方法中。

// Process +load in the given images which are being mapped in by dyld.
void
load_images(const char *path __unused, const struct mach_header *mh)
{
    // Return without taking locks if there are no +load methods here.
    if (!hasLoadMethods((const headerType *)mh)) return;

    recursive_mutex_locker_t lock(loadMethodLock);

    // Discover load methods
    {
        mutex_locker_t lock2(runtimeLock);
        prepare_load_methods((const headerType *)mh);
    }

    // Call +load methods (without runtimeLock - re-entrant)
    call_load_methods();
}

从注释来看,load_images方法是处理被dyld映射给定的镜像文件中的load方法,也就是说实现了load方法类会在这里被处理。而方法中的第一个判断条件也是必须实现load方法。然后,会进入prepare_load_methods这个方法,这个方法是用来做准备工作的:

void prepare_load_methods(const headerType *mhdr)
{
    size_t count, i;

    runtimeLock.assertLocked();

    classref_t *classlist = 
        _getObjc2NonlazyClassList(mhdr, &count);
    for (i = 0; i < count; i++) {
        schedule_class_load(remapClass(classlist[i]));
    }

    category_t **categorylist = _getObjc2NonlazyCategoryList(mhdr, &count);
    for (i = 0; i < count; i++) {
        category_t *cat = categorylist[i];
        Class cls = remapClass(cat->cls);

        ......

        realizeClassWithoutSwift(cls);
        add_category_to_loadable_list(cat);
    }
}

在这个方法中,我们分为了两步操作:

    1. 对非懒加载类进行处理
    1. 对非懒加载分类进行处理

处理非懒加载类

static void schedule_class_load(Class cls)
{
    if (!cls) return;
    assert(cls->isRealized());  // _read_images should realize

    if (cls->data()->flags & RW_LOADED) return;

    // Ensure superclass-first ordering
    schedule_class_load(cls->superclass);

    add_class_to_loadable_list(cls);
    cls->setInfo(RW_LOADED); 
}

void add_class_to_loadable_list(Class cls)
{
    IMP method;

    loadMethodLock.assertLocked();

    method = cls->getLoadMethod();
    if (!method) return;  // Don't bother if cls has no +load method
    
    if (loadable_classes_used == loadable_classes_allocated) {
        loadable_classes_allocated = loadable_classes_allocated*2 + 16;
        loadable_classes = (struct loadable_class *)
            realloc(loadable_classes,
                              loadable_classes_allocated *
                              sizeof(struct loadable_class));
    }
    
    loadable_classes[loadable_classes_used].cls = cls;
    loadable_classes[loadable_classes_used].method = method;
    loadable_classes_used++;
}

struct loadable_class {
    Class cls;  // may be nil
    IMP method;
};

由代码可知,对非懒加载类的处理是将其放入loadable_classes中,每个元素是一个名为loadable_class结构体,其中包含了类和load方法。

处理非懒加载分类

void add_category_to_loadable_list(Category cat)
{
    IMP method;

    loadMethodLock.assertLocked();

    method = _category_getLoadMethod(cat);

    // Don't bother if cat has no +load method
    if (!method) return;
    
    if (loadable_categories_used == loadable_categories_allocated) {
        loadable_categories_allocated = loadable_categories_allocated*2 + 16;
        loadable_categories = (struct loadable_category *)
            realloc(loadable_categories,
                              loadable_categories_allocated *
                              sizeof(struct loadable_category));
    }

    loadable_categories[loadable_categories_used].cat = cat;
    loadable_categories[loadable_categories_used].method = method;
    loadable_categories_used++;
}

struct loadable_category {
    Category cat;  // may be nil
    IMP method;
};

对非懒加载分类的处理是将其放入loadable_categories中,每个元素是一个名为loadable_category结构体,其中包含了分类和load方法。

通过以上处理,就把类和分类分别放入loadable_classesloadable_categories这两个list中,这样准备工作完成了。下面就该调用了:

void call_load_methods(void)
{
    static bool loading = NO;
    bool more_categories;

    loadMethodLock.assertLocked();

    // Re-entrant calls do nothing; the outermost call will finish the job.
    if (loading) return;
    loading = YES;

    do {
        // 1. Repeatedly call class +loads until there aren't any more
        while (loadable_classes_used > 0) {
            call_class_loads();
        }

        // 2. Call category +loads ONCE
        more_categories = call_category_loads();

        // 3. Run more +loads if there are classes OR more untried categories
    } while (loadable_classes_used > 0  ||  more_categories);

    loading = NO;
}

static void call_class_loads(void)
{
    int i;
    
    // Detach current loadable list.
    struct loadable_class *classes = loadable_classes;
    int used = loadable_classes_used;
    loadable_classes = nil;
    loadable_classes_allocated = 0;
    loadable_classes_used = 0;
    
    // Call all +loads for the detached list.
    for (i = 0; i < used; i++) {
        Class cls = classes[i].cls;
        load_method_t load_method = (load_method_t)classes[i].method;
     
        (*load_method)(cls, SEL_load);
    }
    
    // Destroy the detached list.
    if (classes) free(classes);
}

static bool call_category_loads(void)
{
    int i, shift;
    bool new_categories_added = NO;
    
    // Detach current loadable list.
    struct loadable_category *cats = loadable_categories;
    int used = loadable_categories_used;
    int allocated = loadable_categories_allocated;
    loadable_categories = nil;
    loadable_categories_allocated = 0;
    loadable_categories_used = 0;

    // Call all +loads for the detached list.
    for (i = 0; i < used; i++) {
        Category cat = cats[i].cat;

        load_method_t load_method = (load_method_t)cats[i].method;
        Class cls;
        if (!cat) continue;

        cls = _category_getClass(cat);
        
        if (cls  &&  cls->isLoadable()) {
            
            (*load_method)(cls, SEL_load);
            cats[i].cat = nil;
        }
    }

    ......

    return new_categories_added;
}

在这个方法中,然后对这两个list进行遍历,由于我们在存储的时候已经存储了method,所以可以直接使用IMP进行调用load方法。在类的列表中,由于结构体的一个元素就是class,另一个就是loadmethod,所以使用(*load_method)(cls, SEL_load)就是直接调用类的load的方法。而在分类中,就是通过分类拿到类,然后再进行调用。

总结

load方法是先于main函数、在load_images中调用。首先,会把所有非懒加载类的load方法放到loadable_classes中,把分类的load方法loadable_categories中,然后对其进行遍历,找到相关的类和方法直接使用存储的load method调用。

Tips

主类和分类有相同的方法,调用顺序是什么?

  • 如果是load方法,由于call_class_loads()先于call_category_loads(),所以是先调用主类,然后调用分类。
  • 如果是其他方法,则只会调用分类的方法,不会调用主类的方法。因为分类方法都是通过attachList方法加入到类的ro或者rw中,而attachList方法是先将原来的列表进行扩容,然后将旧数据移动到列表的尾部位置,再把新的数据copy到列表头部位置。所以分类的方法在前面,主类方法在后面,方法查找的时候找到前面的方法就直接返回了,并不会再去调用主类的方法。详见类的加载-列表绑定
 void attachLists(List* const * addedLists, uint32_t addedCount) {
        if (addedCount == 0) return;

        if (hasArray()) {
            // many lists -> many lists
            uint32_t oldCount = array()->count;
            uint32_t newCount = oldCount + addedCount;
            setArray((array_t *)realloc(array(), array_t::byteSize(newCount)));
            array()->count = newCount;
            memmove(array()->lists + addedCount, array()->lists, 
                    oldCount * sizeof(array()->lists[0]));
            memcpy(array()->lists, addedLists, 
                   addedCount * sizeof(array()->lists[0]));
        }
        else if (!list  &&  addedCount == 1) {
            // 0 lists -> 1 list
            list = addedLists[0];
        } 
        else {
            // 1 list -> many lists
            List* oldList = list;
            uint32_t oldCount = oldList ? 1 : 0;
            uint32_t newCount = oldCount + addedCount;
            setArray((array_t *)malloc(array_t::byteSize(newCount)));
            array()->count = newCount;
            if (oldList) array()->lists[addedCount] = oldList;
            memcpy(array()->lists, addedLists, 
                   addedCount * sizeof(array()->lists[0]));
        }
    }