用JavaScript带你体验V8引擎解析字符串

1,624 阅读9分钟
AST模块其实要写的话,100篇都写不完,我将一些简单知识点翻译成JavaScript代码来进行讲解(v8内部的复杂性永远都能超出我的意料,现在看到万行的源码都已经没感觉了),如果想看C++源码,可以去翻我前面的流水账。

代码地址:github.com/pflhm2005/V…

先写几个结论。
  • 抽象语法树内部有严格的分类,比如继承于AstNode的语句Statement、表达式Expression、声明Declaration等等,当判定对应词法的类型,会有一个工厂类专门生成对应类型的描述类。
  • v8内部有一个名为string_table_的hashmap缓存了所有字符串,转换抽象语法树时,每遇到一个字符串,会根据其特征换算为一个hash值,插入到hashmap中。在之后如果遇到了hash值一致的字符串,会优先从里面取出来进行比对,一致的话就不会生成新字符串类。
  • 抽象语法树解析的判定优先级依次为Declaration(let a = 1)、Statement(if(true) {})、Expression("a" + "b"),其中还有一个非常特殊的语法类型是goto,即label语法,我只能说尽量不要用这个东西,v8为其专门写了特殊的解析,非常复杂。
  • 每一个大类型(例如Statement)也会有非常详细的子类型,比如if、while、return等等,当前解析词法不匹配对应类型,会进行降级解析。
  • 缓存字符串时,会分为三种情况处理,长度为1的单字符、长度为2-10的且值小于2^32 - 2的纯数字字符串、其他字符串,仅仅影响生成hash值方式,纯数字字符串会转换成数值再计算hash。
案例中,单个词法'Hello'属于原始字符串,由AstRawString类进行管理。而整个待编译字符串"'Hello' + ' World'"中,加号左右的空格会被忽略,解析后分为三段,即字符串、加号、字符串。由于这段代码以字符串开头,被判定为一个字面量(literal),在依次解析后发现了加号与另外一个字符串后结束,所以被判定是一个'普通二元运算表达式',在expression中的标记分别是normal、binary operation、literal。
这里用JavaScript模拟一遍'Hello + World'字符串的解析过程,完整的解析后面有人看再说。命名和逻辑尽量还原C++源码,有些类存在多层继承就不搞了,枚举用数组代替,部分地方的语法与调用可能会看起来有些奇怪,指针以及模版元那些就没办法了。
首先我们需要两个映射表,如下。
const kMaxAscii = 127;
const UnicodeToAsciiMapping = [];
for(let i = 0;i < kMaxAscii;i ++) {
  UnicodeToAsciiMapping.push(String.fromCharCode(i));
}
/**
 * 源码确实是一个超长的三元表达式
 * Token是一个枚举 这里直接用字符串代替了
 * 因为太多了 只保留几个看看
 */
const TokenToAsciiMapping = (c) => {
  return c === '(' ? 'Token::LPAREN' : 
  c == ')' ? 'Token::RPAREN' :
  // ...很多很多
  c == '"' ? 'Token::STRING' :
  c == '\'' ? 'Token::STRING' :
  // ...很多很多
  'Token::ILLEGAL'
};
const UnicodeToToken = UnicodeToAsciiMapping.map(v => TokenToAsciiMapping(v));
一个map负责对Unicode与Ascii做映射,一个map负责对Unicode与Token类型的映射,这里v8利用数组下标来快速定位字符类型。
v8内部是对字符串做逐字解析,我们需要一个Stream类来管理和处理,实现一下。
class Stream {
  constructor(source_string) {
    /**
     * buffer_不会在构造函数中初始化
     * 但为了模拟v8这里暂时保存源字符串
     */
    this.source_string = source_string;
    /**
     * 作为容器存储字符
     */
    this.buffer_ = [];
    /**
     * 三个指针分别代表当前解析进度
     */
    this.buffer_start_ = 0
    this.buffer_cursor_ = 0
    this.buffer_end_ = 0
  }
  ReadBlockChecked() {
    return this.ReadBlock();
  }
  ReadBlock() {
    this.buffer_ = this.source_string.split('').map(v => UnicodeToAsciiMapping.indexOf(v));
    this.buffer_end_ = this.buffer_.length;
    /**
     * 这里的返回与源码不同 涉及gc 不做展开
     */
    return this.buffer_.length;
  }
  /**
   * 返回当前字符 并前进一格
   */
  Advance() {
    let tmp = this.peek();
    this.buffer_cursor_++;
    return tmp;
  }
  /**
   * 返回当前字符
   * 同时会做初始化
   */
  peek() {
    if(this.buffer_cursor_ < this.buffer_end_) {
      return this.buffer_[this.buffer_cursor_];
    } else if(this.ReadBlockChecked()) {
      return this.buffer_[this.buffer_cursor_];
    } else {
      return null;
    }
  }
}
有了这个类,就能对字符串逐字解析,但是还是需要一个机器来启动这个步骤,机器叫scanner。在实现扫描机器之前,我们还需要实现词法类,也就是如何描述单个词法。这个类在v8中叫TokenDesc,属于Ast中最基础的单元。
class TokenDesc {
  constructor() {
    /**
     * 源码中是一个结构体
     * 除了标记起始、结束位置还有若干方法
     */
    this.location =  {
      beg_pos: 0,
      end_pos: 0,
    };
    /**
     * 负责管理字符串
     * 还有一个名为raw_literal_chars的同类型属性负责储存源字符串
     */
    this.literal_chars = new LiteralBuffer();
    /**
     * Token类型
     */
    this.token = null;
    /**
     * 处理小整数
     */
    this.smi_value = 0;
    this.after_line_terminator = false;
  }
}
里面的属性基本上还原了v8源码,Location做了简化,另外literal_chars负责专门处理字符串,后面会给出实现。
token则标记了该词法的类型,类型判断可见上面的第二个映射表,根据不同的类型有不同的case处理。
smi_value则管理小整数类型的词法,可以去看jjc对于这个的介绍,我这里就不展开了。
有了词法类,再来实现扫描器scanner。
class Scanner {
  constructor(source_string) {
    this.source_ = new stream(source_string);
    /**
     * 当前字符的Unicode编码
     * 如果为null代表解析完成
     */
    this.c0_ = null;
    /**
     * 其实v8有三个词法描述类
     * token_storage_是一个数组 里面装着那个三个类 这里就不用了
     * 为了方便就弄一个
     */
    this.TokenDesc = new TokenDesc();
    this.token_storage_ = [];
  }
  /**
   * 源码有current_、next_、next_next_三个标记 这里搞一个
   */
  next() {
    return this.TokenDesc;
  }
  Initialize() {
    this.Init();
    this.next().after_line_terminator = true;
    this.Scan();
  }
  Init() {
    this.Advance();
    // 后面会有一些词法描述类对token_storage_的映射 这里跳过
  }
  Advance() {
    this.c0_ = this.source_.Advance();
  }
  /**
   * 这里有函数重载 JS就直接用默认参数模拟了
   */
  Scan(next = this.TokenDesc) {
    next.token = this.ScanSingleToken();
    next.location.end_pos = this.source_.buffer_cursor_ - 1;
  }
  /**
   * 单个词法的解析
   */
  ScanSingleToken() {
    let token = null;
    do {
      this.next().location.beg_pos = this.source_.buffer_cursor_;
      if(this.c0_ < kMaxAscii) {
        token = UnicodeToToken[this.c0_];
        switch(token) {
          case 'Token::LPAREN':
          /**
           * 有很多其他的case
           * 因为只讲字符串
           * 这里就不实现这个方法了
           */
            return this.Select(token);
          case 'Token::STRING':
            return this.ScanString();
          // ...
        } 
      }
      /**
       * 源码中这里处理一些特殊情况 不展开了
       */
    } while(token === 'Token::WHITESPACE')
    return token;
  }
}
这个类比较大,简化了不少地方,核心当然是解析。在源码中,对scanner类调用初始化的Initialize时就会对第一个词法进行解析,如同我重写的那个逻辑,最后对字符串的处理方法就是那个ScanString。
在这里暂时没有将ScanString的实现给出来,主要是在这个方法关联着另外一个类,即之前TokenDesc类中的literal_chars。
所以先把管理字符串的类实现,再来看对字符串的最终解析。
const Latin1_kMaxChar = 255;
// constexpr int kOneByteSize = kCharSize = sizeof(char);
const kOneByteSize = 1;
class LiteralBuffer {
  constructor() {
    /**
     * 源码中是一个Vector容器
     * 有对应扩容算法
     */
    this.backing_store_ = [];
    this.position_ = 0;
    /**
     * 当字符串中有字符的Unicode值大于255
     * 判定为双字节类型 这里先不处理这种
     */
    this.is_one_byte_ = null;
  }
  /**
   * 启动这个时默认字符串为单字节
   */
  start() {
    this.position_ = 0;
    this.is_one_byte_ = true;
  }
  /**
   * 只关心单字节字符 所以那两个方法不给出实现了
   */
  AddChar(code_unit) {
    if(this.is_one_byte_) {
      if(code_unit <= Latin1_kMaxChar) {
        return this.AddOneByteChar(code_unit);
      }
      this.ConvertToTwoByte();
    }
    this.AddTwoByteChar(code_unit);
  }
  AddOneByteChar(one_byte_char) {
    /**
     * 扩容算法简述就是以64为基准 每次扩容*4
     * 当所需容器大于(1024 * 1024) / 3时 写死为2 * 1024 * 1024
     */
    if (this.position_ >= this.backing_store_.length) this.ExpandBuffer();
    this.backing_store_[this.position_] = one_byte_char;
    this.position_ += kOneByteSize;
  }
}
其实这个类本身比较简单,只是用了一个容器来装字符,必要时进行扩容,单双字节不关心的话也就没什么了。
有了这个类,就能对字符串进行完整的解析,来实现scanner类的ScanString方法吧。
class Scanner {
  // ...
  ScanString() {
    // 保存当前字符串的标记符号 ' 或 "
    let quote = this.c0_;
    this.next().literal_chars.Start();
    while(true) {
      this.AdvanceUntil();
      /**
       * 特殊符号直接前进一格
       */
      while(this.c0_ === '\\') {
        this.Advance();
      }
      /**
       * 遇到结束的标记代表解析结束
       */
      if (this.c0_ === quote) {
        this.Advance();
        return 'Token::STRING';
      }
      this.AddLiteralChar(this.c0_);
    }
  }
  AddLiteralChar(c) {
    this.next().literal_chars.AddChar(c);
  }
}
可以看到,除去那个AdvanceUntil方法,其实还是正常的逐字遍历字符,当遇到同一个标记时,就代表字符串解析结束。
但是这个AdvanceUtil方法确实比较有意思,简述就是快速检测字符串的结尾位置并完成扫描,顺利的话跑完这个方法就结束了整个ScanString。其参数是一个函数,负责检查当前字符是否可能是字符串结束标志。C++源码中用的是匿名函数,看起来比较难受,这里用JS重写一遍,如下。
class Scanner {
  // ...
  /**
   * 这里相对源码有改动
   * 1、实际调用的是source_上的方法 并把返回值给了c0_
   * 2、判断函数在这里写实现
   */
  AdvanceUntil() {
    /**
     * 这里需要实现std标准库中一个方法
     * 实际上是三个参数 且前两个参数为迭代器 为了方便暂时就不完美实现了
     */
    const find_if = (arr, start, end, callback) => {
      let tarArr = arr.slice(start, end);
      let tarIdx = tarArr.findIndex(v => callback(v));
      return tarIdx === -1 ? end : tarIdx;
    }
    const callback = (c0) => {
      /**
       * 代表当前字符可能是一个结束符 这里简化了判断 源码如下
       * uint8_t char_flags = character_scan_flags[c0];
       * if (MayTerminateString(char_flags)) return true;
       */
      if(["\'", "\""].includes(UnicodeToAsciiMapping[c0])) return true;
      this.AddLiteralChar(c0);
      return false;
    }
    /**
     * 在字符串中寻找第一个字符结尾标记的位置
     * 例如'、"等等
     */
    let next_cursor_pos = find_if(this.source_.buffer_, this.source_.buffer_cursor_, this.source_.buffer_end_, callback);
    if(next_cursor_pos === this.source_.buffer_end_) {
      this.source_.buffer_cursor_ = this.source_.buffer_end_;
      this.c0_ = null;
    } else {
      this.source_.buffer_cursor_ = next_cursor_pos + 1;
      this.c0_ = this.source_.buffer_[next_cursor_pos + 1];
    }
  }
}
这里其实也对字符串进行了遍历,但只是粗糙的扫描,在一般情况下,这个方法走完字符串就遍历完毕,但是偶尔也会有特殊情况,比如说"ab'c'd"、"abc\"d"。当遇到特殊情况,这里只能将前面的字符add后,交给外部继续处理。
这里还有一个映射表,叫character_scan_flag,也是对单个字符的类型判定,属于一种可能性分类。比如遍历到一个字符z,这里就会给一个标记kCannotBeKeyword,代表这个词法不可能是一个关键词,在某些情况可以快速跳过一些流程。同理,在遇到'、"字符时,会被判断可能是一个字符串的结尾标记,这里就用上了。这个映射表比较复杂,前面我就没搞出来。
至此,一个字符串的词法就算是解析完了,最后会返回一个类型的Token::STRING的标记,作为词法描述类型。当然,这个单独的词法实际上没有任何意义,单独拿出来会被忽略。但是如果与运算符ADD和另外一个字符串连起来,会进化成一个二元运算表达式,这些东西都是后面的事了。
最后给一个测试结果,执行的时候要注释掉一些方法,因为没有给实现。
let scanner = new Scanner(source_code);
scanner.Initialize();
console.log(scanner)
结果如图.
其中TokenDesc会被包装成更高层的类最后进入抽象语法树,这些是后话了。字符串的存储方式、hash表等等后面有空再说吧。