从分布式事务协议到Seata

1,669 阅读26分钟

首先学习seata之前 先来复习重温下分布式事务

分布式事务基础

事务

“要么什么都不做,要么做全套(All or Nothing)”

数据库本地事务

说到数据库事务就不得不说,数据库事务中的四大特性,ACID:

ACID

  • A:原子性(Atomicity)

一个事务(transaction)中的所有操作,要么全部完成,要么全部不完成,不会结束在中间某个环节。

  • C:一致性(Consistency)

事务的一致性指的是在一个事务执行之前和执行之后数据库都必须处于一致性状态。如果事务成功地完成,那么系统中所有变化将正确地应用,系统处于有效状态。如果在事务中出现错误,那么系统中的所有变化将自动地回滚,系统返回到原始状态。

  • I:隔离性(Isolation)

指的是在并发环境中,当不同的事务同时操纵相同的数据时,每个事务都有各自的完整数据空间。由并发事务所做的修改必须与任何其他并发事务所做的修改隔离。事务查看数据更新时,数据所处的状态要么是另一事务修改它之前的状态,要么是另一事务修改它之后的状态,事务不会查看到中间状态的数据。

  • D:持久性(Durability)

指的是只要事务成功结束,它对数据库所做的更新就必须永久保存下来。即使发生系统崩溃,重新启动数据库系统后,数据库还能恢复到事务成功结束时的状态。 打个比方,你买东西的时候需要记录在账本上,即使老板忘记了那也有据可查。

InnoDB实现原理

我们的本地事务由资源管理器进行管理:

事务的ACID是通过InnoDB日志和锁来保证。

  • 事务的隔离性是通过数据库锁的机制实现的,

  • 持久性通过redo log(重做日志)来实现,

  • 原子性和一致性通过Undolog来实现。
    UndoLog的原理很简单,为了满足事务的原子性,在操作任何数据之前,首先将数据备份到一个地方(这个存储数据备份的地方称为UndoLog)。然后进行数据的修改。如果出现了错误或者用户执行了ROLLBACK语句,系统可以利用Undo Log中的备份将数据恢复到事务开始之前的状态。
    和Undo Log相反,RedoLog记录的是新数据的备份。在事务提交前,只要将RedoLog持久化即可,不需要将数据持久化。当系统崩溃时,虽然数据没有持久化,但是RedoLog已经持久化。系统可以根据RedoLog的内容,将所有数据恢复到最新的状态。

分布式事务是怎么产生的

微服务的盛行,导致了可能出现应用一次调用包含对多个服务的调用,这种情况下就可能会出现在分布式事务的问题。
分布式事务需要保证这些小操作要么全部成功,要么全部失败。本质上来说,分布式事务就是为了保证不同数据库的数据一致性。

分布式事务的基础

CAP

CAP定理,又被叫作布鲁尔定理。对于设计分布式系统来说(不仅仅是分布式事务)的架构师来说,CAP就是你的入门理论。

  • C (一致性):对某个指定的客户端来说,读操作能返回最新的写操作。对于数据分布在不同节点上的数据上来说,如果在某个节点更新了数据,那么在其他节点如果都能读取到这个最新的数据,那么就称为强一致,如果有某个节点没有读取到,那就是分布式不一致。

  • A (可用性):非故障的节点在合理的时间内返回合理的响应(不是错误和超时的响应)。可用性的两个关键一个是合理的时间,一个是合理的响应。合理的时间指的是请求不能无限被阻塞,应该在合理的时间给出返回。

  • P (分区容错性):当出现网络分区后,系统能够继续工作。打个比方,这里个集群有多台机器,有台机器网络出现了问题,但是这个集群仍然可以正常工作。

在分布式系统中,网络无法100%可靠,分区其实是一个必然现象,如果我们选择了CA而放弃了P,那么当发生分区现象时,为了保证一致性,这个时候必须拒绝请求,但是A又不允许,所以分布式系统理论上不可能选择CA架构,只能选择CP或者AP架构。
对于CP来说,放弃可用性,追求一致性和分区容错性,我们的zookeeper其实就是追求的强一致。
对于AP来说,放弃一致性(这里说的一致性是强一致性),追求分区容错性和可用性,这是很多分布式系统设计时的选择,后面的BASE也是根据AP来扩展。
所以说其实zookeeper并不适合作为分布式系统的协调者,更好的我们应该选择nacos、eureka

顺便一提,CAP理论中是忽略网络延迟,也就是当事务提交时,从节点A复制到节点B,但是在现实中这个是明显不可能的,所以总会有一定的时间是不一致。
同时CAP中选择两个,比如你选择了CP,并不是叫你放弃A。因为P出现的概率实在是太小了,大部分的时间你仍然需要保证CA。就算分区出现了你也要为后来的A做准备,比如通过一些日志的手段,是其他机器回复至可用。

BASE理论

基于AP扩展的理论

BASE 是 Basically Available(基本可用)、Soft state(软状态)和 Eventually consistent (最终一致性)三个短语的缩写。

  1. 基本可用:分布式系统在出现故障时,允许损失部分可用功能,保证核心功能可用。
  2. 软状态:允许系统中存在中间状态,这个状态不影响系统可用性,这里指的是CAP中的不一致。
  3. 最终一致:最终一致是指经过一段时间后,所有节点数据都将会达到一致。

BASE解决了CAP中理论没有网络延迟,在BASE中用软状态和最终一致,保证了延迟后的一致性。BASE和 ACID 是相反的,它完全不同于ACID的强一致性模型,而是通过牺牲强一致性来获得可用性,并允许数据在一段时间内是不一致的,但最终达到一致状态。

分布式事务协议(规范)

XA协议

XA 就是 X/Open DTP 定义的交易中间件与数据库之间的接口规范(即接口函数),交易中间件用它来通知数据库事务的开始、结束以及提交、回滚等。 XA 接口函数由数据库厂商提供。
二阶提交协议和三阶提交协议就是根据这一思想衍生出来的。

在XA协议中分为两阶段: 第一阶段:事务管理器要求每个涉及到事务的数据库预提交(precommit)此操作,并反映是否可以提交. 第二阶段:事务协调器要求每个数据库提交数据,或者回滚数据。

优点: 尽量保证了数据的强一致,实现成本较低,在各大主流数据库都有自己实现,对于MySQL是从5.5开始支持。
缺点: 单点问题:事务管理器在整个流程中扮演的角色很关键,如果其宕机,比如在第一阶段已经完成,在第二阶段正准备提交的时候事务管理器宕机,资源管理器就会一直阻塞,导致数据库无法使用。 同步阻塞:在准备就绪之后,资源管理器中的资源一直处于阻塞,直到提交完成,释放资源。 数据不一致:两阶段提交协议虽然为分布式数据强一致性所设计,但仍然存在数据不一致性的可能,比如在第二阶段中,假设协调者发出了事务commit的通知,但是因为网络问题该通知仅被一部分参与者所收到并执行了commit操作,其余的参与者则因为没有收到通知一直处于阻塞状态,这时候就产生了数据的不一致性。

总的来说,XA协议比较简单,成本较低,但是其单点问题,以及不能支持高并发(由于同步阻塞)依然是其最大的弱点。

XA的2PC实现 (更常用)

2PC(Two-Phase Commit 二阶段提交)

阶段一:准备阶段

由协调者发起并传递带有事务信息的请求给各个参与者,询问是否可以提交事务,并等待返回结果。参与者执行事务操作,将Undo和Redo放入事务日志中(但是不提交) 如果参与者执行成功就返回YES(可以提交事务),失败NO(不能提交事务)

阶段二:提交阶段

此阶段分两种情况:所有参与者均返回YES,有任何一个参与者返回NO
提交事务:(所有参与者均反馈YES)
  1. 协调者向所有参与者发出正式提交事务的请求(即Commit请求)。
  2. 参与者执行Commit请求,并释放整个事务期间占用的资源。
  3. 各参与者向协调者反馈Ack完成的消息。
  4. 协调者收到所有参与者反馈的Ack消息后,即完成事务提交。
回滚事务:(任何一个参与者反馈NO)
  1. 协调者向所有参与者发出回滚请求(即Rollback请求)。
  2. 参与者使用阶段1中的Undo信息执行回滚操作,并释放整个事务期间占用的资源。
  3. 各参与者向协调者反馈Ack完成的消息。
  4. 协调者收到所有参与者反馈的Ack消息后,即完成事务中断。

2PC的缺陷

  1、同步阻塞:最大的问题即同步阻塞,即:所有参与事务的逻辑均处于阻塞状态。
  2、单点:协调者存在单点问题,如果协调者出现故障,参与者将一直处于锁定状态。
  3、脑裂:在阶段2中,如果只有部分参与者接收并执行了Commit请求,会导致节点数据不一致。
  由于2PC存在如上同步阻塞、单点、脑裂问题,因此又出现了2PC的改进方案,即3PC。

3PC

3PC(Three-Phase Commit三阶段提交协议),是2PC的改进版本,即将事务的提交过程分为CanCommit、PreCommit、do Commit三个阶段来进行处理。

阶段一:CanCommit

1、协调者向所有参与者发出包含事务内容的CanCommit请求,询问是否可以提交事务,并等待所有参与者答复。

2、参与者收到CanCommit请求后,如果认为可以执行事务操作,则反馈YES并进入预备状态,否则反馈NO。

阶段二:PreCommit

此阶段分为两种情况:
1.所有参与者均受到请求并返回YES。

2.有任何一个参与者返回NO,或者有任何一个参与者超时,协调者无法收到反馈,则事务中断

事务预提交:(所有参与者均反馈YES时)
  1、协调者向所有参与者发出PreCommit请求,进入准备阶段。
  2、参与者收到PreCommit请求后,执行事务操作,将Undo和Redo信息记入事务日志中(但不提交事务)。
  3、各参与者向协调者反馈Ack响应或No响应,并等待最终指令。
中断事务:(任何一个参与者反馈NO,或者等待超时后协调者尚无法收到所有参与者的反馈时)
事务回滚 NO时
  1、协调者向所有参与者发出abort请求。
  2、无论收到协调者发出的abort请求,或者在等待协调者请求过程中出现超时,参与者均会中断事务。
doCommit阶段
该阶段进行真正的事务提交,也可以分为以下两种情况。

执行提交

1.发送提交请求 协调接收到参与者发送的ACK响应,那么他将从预提交状态进入到提交状态。并向所有参与者发送doCommit请求。
2.事务提交 参与者接收到doCommit请求之后,执行正式的事务提交。并在完成事务提交之后释放所有事务资源。
3.响应反馈 事务提交完之后,向协调者发送Ack响应。
4.完成事务 协调者接收到所有参与者的ack响应之后,完成事务。

中断事务
协调者没有接收到参与者发送的ACK响应(可能是接受者发送的不是ACK响应,也可能响应超时),那么就会执行中断事务。
1.发送中断请求 协调者向所有参与者发送abort请求
2.事务回滚 参与者接收到abort请求之后,利用其在阶段二记录的undo信息来执行事务的回滚操作,并在完成回滚之后释放所有的事务资源。
3.反馈结果 参与者完成事务回滚之后,向协调者发送ACK消息
4.中断事务 协调者接收到参与者反馈的ACK消息之后,执行事务的中断。

3PC相对于2PC而言到底优化了什么地方呢?

相比较2PC而言,3PC对于协调者(Coordinator)和参与者(Partcipant)都设置了超时时间,而2PC只有协调者才拥有超时机制。这解决了一个什么问题呢?这个优化点,主要是避免了参与者在长时间无法与协调者节点通讯(协调者挂掉了)的情况下,无法释放资源的问题,因为参与者自身拥有超时机制会在超时后,自动进行本地commit从而进行释放资源。而这种机制也侧面降低了整个事务的阻塞时间和范围。

另外,通过CanCommit、PreCommit、DoCommit三个阶段的设计,相较于2PC而言,多设置了一个缓冲阶段保证了在最后提交阶段之前各参与节点的状态是一致的。

以上就是3PC相对于2PC的一个提高(相对缓解了2PC中的前两个问题),但是3PC依然没有完全解决数据不一致的问题

分布式事务解决方案

TCC

TCC的解释:

  • Try阶段:尝试执行,完成所有业务检查(一致性),预留必须业务资源(准隔离性)
  • Confirm阶段:确认执行真正执行业务,不作任何业务检查,只使用Try阶段预留的业务资源,Confirm操作满足幂等性。要求具备幂等设计,Confirm失败后需要进行重试。
  • Cancel阶段:取消执行,释放Try阶段预留的业务资源 Cancel操作满足幂等性Cancel阶段的异常和Confirm阶段异常处理方案基本上一致。

举个简单的例子 如果你有100元,你现在要用3块钱去买一瓶水

  • Try阶段 : 你需要向你的钱包检查是否够3元并锁住这3元,此时先隔离3块钱(冻结或者直接扣掉的方式)
    如果有一个失败,则进入cancel阶段。如果都成功,则进入confirm。
  • confirm阶段: 确认这100元扣,和这一瓶水被卖,如果confirm失败无论什么失败则重试(会依靠活动日志进行重试)
  • cancel阶段: (释放这3元和这一瓶水),如果cancel失败不论什么失败都进行重试cancel

基于消息表

如果是异步调用,比如服务C先调用服务A后,服务C不用管服务B的执行结果,直接返回,那么这种情况下,应选用消息队列!

MQ事务

MQ事务 在RocketMQ中实现了分布式事务,实际上其实是对本地消息表的一个封装,将本地消息表移动到了MQ内部

基本流程如下: 第一阶段Prepared消息,会拿到消息的地址。 第二阶段执行本地事务。 第三阶段通过第一阶段拿到的地址去访问消息,并修改状态。消息接受者就能使用这个消息。 如果确认消息失败,在RocketMq Broker中提供了定时扫描没有更新状态的消息,如果有消息没有得到确认,会向消息发送者发送消息,来判断是否提交,在rocketmq中是以listener的形式给发送者,用来处理。

如果消费超时,则需要一直重试,消息接收端需要保证幂等。如果消息消费失败,这个就需要人工进行处理,因为这个概率较低,如果为了这种小概率时间而设计这个复杂的流程反而得不偿失

rocketMQ的方式还未完全了解,故先仅作参考

Saga事务

Saga模式是一种分布式异步事务,一种最终一致性事务
Saga是30年前一篇数据库伦理提到的一个概念。其核心思想是将长事务拆分为多个本地短事务,由Saga事务协调器协调,如果正常结束那就正常完成,如果某个步骤失败,则根据相反顺序一次调用补偿操作。

Saga的组成: 每个Saga由一系列sub-transaction Ti 组成 每个Ti 都有对应的补偿动作Ci,补偿动作用于撤销Ti造成的结果,这里的每个T,都是一个本地事务。 可以看到,和TCC相比,Saga没有“预留 try”动作,它的Ti就是直接提交到库。 Saga的执行顺序有两种:

  • T1, T2, T3, ..., Tn

  • T1, T2, ..., Tj, Cj,..., C2, C1,其中0 < j < n

Saga定义了两种恢复策略:

  • 向后恢复,即上面提到的第二种执行顺序,其中j是发生错误的sub-transaction,这种做法的效果是撤销掉之前所有成功的sub-transation,使得整个Saga的执行结果撤销。

  • 向前恢复,适用于(重试N次后必定会成功)必须要成功的场景,执行顺序是类似于这样的:T1, T2, ..., Tj(失败), Tj(重试),..., Tn,其中j是发生错误的sub-transaction。该情况下不需要Ci。

这里要注意的是,在saga模式中不能保证隔离性,因为没有锁住资源,其他事务依然可以覆盖或者影响当前事务。
还是拿100元买一瓶水的例子来说,这里定义
T1=扣100元 T2=给用户加一瓶水 T3=减库存一瓶水
C1=加100元 C2=给用户减一瓶水 C3=给库存加一瓶水
我们一次进行T1,T2,T3如果发生问题,就执行发生问题的C操作的反向。 上面说到的隔离性的问题会出现在,如果执行到T3这个时候需要执行回滚,但是这个用户已经把水喝了(另外一个事务),回滚的时候就会发现,无法给用户减一瓶水了。这就是事务之间没有隔离性的问题
可以看见saga模式没有隔离性的影响还是较大,可以参照华为的解决方案:从业务层面入手加入一 Session 以及锁的机制来保证能够串行化操作资源。也可以在业务层面通过预先冻结资金的方式隔离这部分资源, 最后在业务操作的过程中可以通过及时读取当前状态的方式获取到最新的更新。 具体实例:可以参考华为的servicecomb

和TCC对比

  • Saga相比TCC的缺点
    缺少预留动作,导致补偿动作的实现比较麻烦:Ti就是commit,比如一个业务是发送邮件,在TCC模式下,先保存草稿(Try)再发送(Confirm),撤销的话直接删除草稿(Cancel)就行了。而Saga则就直接发送邮件了(Ti),如果要撤销则得再发送一份邮件说明撤销(Ci),实现起来有一些麻烦。

  • 不过没有预留动作也可以认为是优点:
    有些业务很简单,套用TCC需要修改原来的业务逻辑,而Saga只需要添加一个补偿动作就行了。
    TCC最少通信次数为2n,而Saga为n(n=sub-transaction的数量)。
    有些第三方服务没有Try接口,TCC模式实现起来就比较tricky了,而Saga则很简单。
    没有预留动作就意味着不必担心资源释放的问题,异常处理起来也更简单(请对比Saga的恢复策略和TCC的异常处理)。

目前分布式事务解决的方案主要有对业务无入侵和有入侵的方案,无入侵方案主要有基于数据库 XA 协议的两段式提交(2PC)方案,它的优点是对业务代码无入侵,但是它的缺点也是很明显:必须要求数据库对 XA 协议的支持,且由于 XA 协议自身的特点,它会造成事务资源长时间得不到释放,锁定周期长,而且在应用层上面无法干预,因此它性能很差,因此在互联网项目中并不是很流行这种解决方案。
为了这个弥补这种方案带来性能低的问题,大佬们又想出了很多种方案来解决,但这无一例外都需要通过在应用层做手脚,即入侵业务的方式,比如很出名的 TCC 方案,基于 TCC 也有很多成熟的框架,如 ByteTCC、tcc-transaction 等。以及基于可靠消息的最终一致性来实现,如 RocketMQ 的事务消息。
入侵代码的方案是基于现有情形“迫不得已”才推出的解决方案,实际上它们实现起来非常不优雅,一个事务的调用通常伴随而来的是对该事务接口增加一系列的反向操作,比如 TCC 三段式提交,提交逻辑必然伴随着回滚的逻辑,这样的代码会使得项目非常臃肿,维护成本高。

分布式具体解决方案——Seata

Seata 是一款开源的分布式事务解决方案(2PC的一种具体实现),致力于提供高性能和简单易用的分布式事务服务。Seata 将为用户提供了 AT、TCC、SAGA 和 XA 事务模式,为用户打造一站式的分布式解决方案。

分布式事务 Seata 产品模块

Seata 中有三大模块,分别是 TM、RM 和 TC。 其中 TM 和 RM 是作为 Seata 的客户端与业务系统集成在一起,TC 作为 Seata 的服务端独立部署。

  • TC - 事务协调者 维护全局和分支事务的状态,驱动全局事务提交或回滚。

  • TM - 事务管理器 定义全局事务的范围:开始全局事务、提交或回滚全局事务。

  • RM - 资源管理器 管理分支事务处理的资源,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚。

Seata过程模型

在 Seata 中,分布式事务的执行流程:

TM 开启分布式事务(TM 向 TC 注册全局事务记录); 按业务场景,编排数据库、服务等事务内资源(RM 向 TC 汇报资源准备状态 ); TM 结束分布式事务,事务一阶段结束(TM 通知 TC 提交/回滚分布式事务); TC 汇总事务信息,决定分布式事务是提交还是回滚; TC 通知所有 RM 提交/回滚 资源,事务二阶段结束。

seata 分布式解决方案

Seata 会有 4 种分布式事务解决方案,分别是 AT 模式、TCC 模式、Saga 模式和 XA 模式。

AT模式(最多人使用)

AT 模式是一种无侵入的分布式事务解决方案。
在 AT 模式下,Seata 框架会自动生成事务的二阶段提交和回滚操作,只需要加入注解就可以集成成功。

但是这么简单的操作的下有两个前提

  1. 基于支持本地 ACID 事务的关系型数据库。(意味一些需要保证数据一致性 但是又无法支持ACID的数据库操作无法使用 如redis等)
  2. Java 应用,通过 JDBC 访问数据库。

AT 模式基于 支持本地 ACID 事务 的 关系型数据库:

  • 一阶段 prepare 行为:在本地事务中,一并提交业务数据更新和相应回滚日志记录。
  • 二阶段 commit 行为:马上成功结束,自动 异步批量清理回滚日志。
  • 二阶段 rollback 行为:通过回滚日志,自动 生成补偿操作,完成数据回滚。
  1. 一阶段:
    在一阶段,Seata 会拦截“业务 SQL”,首先解析 SQL 语义,找到“业务 SQL”要更新的业务数据,在业务数据被更新前,将其保存成“before image”,然后执行“业务 SQL”更新业务数据,在业务数据更新之后,再将其保存成“after image”,最后生成行锁。以上操作全部在一个数据库事务内完成,这样保证了一阶段操作的原子性。

  1. 二阶段提交:
    二阶段如果是提交的话,因为“业务 SQL”在一阶段已经提交至数据库, 所以 Seata 框架只需将一阶段保存的快照数据和行锁删掉,完成数据清理即可。

  1. 二阶段回滚:
    二阶段如果是回滚的话,Seata 就需要回滚一阶段已经执行的“业务 SQL”,还原业务数据。回滚方式便是用“before image”还原业务数据;但在还原前要首先要校验脏写,对比“数据库当前业务数据”和 “after image”,如果两份数据完全一致就说明没有脏写,可以还原业务数据,如果不一致就说明有脏写,出现脏写就需要转人工处理。

具体SQL解析过程可以查看官方权威解释

TCC模式

3月份,蚂蚁金服贡献TCC模式

根据两阶段行为模式的不同,我们将分支事务划分为
Automatic (Branch) Transaction Mode 和 Manual (Branch) Transaction Mode.

AT 模式基于 支持本地 ACID 事务 的 关系型数据库:

一阶段 prepare 行为:在本地事务中,一并提交业务数据更新和相应回滚日志记录。
二阶段 commit 行为:马上成功结束,自动 异步批量清理回滚日志。
二阶段 rollback 行为:通过回滚日志,自动 生成补偿操作,完成数据回滚。

相应的,TCC 模式,不依赖于底层数据资源的事务支持:

一阶段 prepare 行为:调用 自定义 的 prepare 逻辑。
二阶段 commit 行为:调用 自定义 的 commit 逻辑。
二阶段 rollback 行为:调用 自定义 的 rollback 逻辑。

所谓 TCC 模式,是指支持把 自定义 的分支事务纳入到全局事务的管理中
TCC 模式需要用户根据自己的业务场景实现 Try、Confirm 和 Cancel 三个操作;事务发起方在一阶段 执行 Try 方式,在二阶段提交执行 Confirm 方法,二阶段回滚执行 Cancel 方法。

以“扣钱”场景为例,用户就需要考虑如何将原来一步就能完成的扣钱操作,拆成两阶段,实现成三个方法,并且保证一阶段 Try 成功的话 二阶段 Confirm 一定能成功。

如上图所示, Try 方法作为一阶段准备方法,需要做资源的检查和预留。在扣钱场景下,Try 要做的事情是就是检查账户余额是否充足,预留转账资金,预留的方式就是冻结 A 账户的 转账资金。Try 方法执行之后,账号 A 余额虽然还是 100,但是其中 30 元已经被冻结了,不能被其他事务使用。

二阶段 Confirm 方法执行真正的扣钱操作。Confirm 会使用 Try 阶段冻结的资金,执行账号扣款。Confirm 方法执行之后,账号 A 在一阶段中冻结的 30 元已经被扣除,账号 A 余额变成 70 元 。

如果二阶段是回滚的话,就需要在 Cancel 方法内释放一阶段 Try 冻结的 30 元,使账号 A 的回到初始状态,100 元全部可用。

用户接入 TCC 模式,最重要的事情就是考虑如何将业务模型拆成 2 阶段,实现成 TCC 的 3 个方法,并且保证 Try 成功 Confirm 一定能成功。相对于 AT 模式,TCC 模式对业务代码有一定的侵入性,但是 TCC 模式无 AT 模式的全局行锁,TCC 性能会比 AT 模式高很多。

TCC模式 蚂蚁金服已经用了多年 有很丰富的经验可以借鉴 mp.weixin.qq.com/s/G9vkficqB…

Saga模式

Saga模式是SEATA提供的长事务解决方案,在Saga模式中,业务流程中每个参与者都提交本地事务,当出现某一个参与者失败则补偿前面已经成功的参与者,一阶段正向服务和二阶段补偿服务都由业务开发实现。

适用场景:

  • 业务流程长、业务流程多
  • 参与者包含其它公司或遗留系统服务,无法提供 TCC 模式要求的三个接口

优势:

  • 一阶段提交本地事务,无锁,高性能
  • 事件驱动架构,参与者可异步执行,高吞吐
  • 补偿服务易于实现

缺点:

  • 不保证隔离性(应对方案见用户文档)

分布式事务执行过程中,依次执行各参与者的正向操作,如果所有正向操作均执行成功,那么分布式事务提交。如果任何一个正向操作执行失败,那么分布式事务会去退回去执行前面各参与者的逆向回滚操作,回滚已提交的参与者,使分布式事务回到初始状态。

参考:
juejin.cn/post/684490… objcoding.com/2019/07/11/…
mp.weixin.qq.com/s/G9vkficqB…
seata.io/zh-cn/docs/… www.sofastack.tech/blog/seata-…