Promise 实现原理

1,892 阅读16分钟

在传统的异步编程中,如果异步之间存在依赖关系,我们就需要通过层层嵌套回调来满足这种依赖。

如果嵌套层数过多,可读性和可维护性都变得很差,产生所谓“回调地狱”,而Promise将回调嵌套改为链式调用,增加可读性和可维护性。

下面我们就来一步步实现一个Promise。

观察者模式

我们先来看一个最简单的Promise使用:

const p1 = new Promise((resolve, reject) => {
    setTimeout(() => {
        resolve('result')
    },
    1000);
}) 

p1.then(res => console.log(res), err => console.log(err))

观察这个例子,我们分析Promise的调用流程:

  • Promise的构造方法接收一个executor(),在new Promise()时就立刻执行这个executor回调

  • executor()内部的异步任务被放入宏/微任务队列,等待执行

  • then()被执行,收集成功/失败回调,放入成功/失败队列

  • executor()的异步任务被执行,触发resolve/reject,从成功/失败队列中取出回调依次执行

其实熟悉设计模式的同学,很容易就能意识到这是个观察者模式,这种收集依赖 -> 触发通知 -> 取出依赖执行 的方式,被广泛运用于观察者模式的实现,在Promise里,执行顺序是then收集依赖 -> 异步触发resolve -> resolve执行依赖。

依此,我们可以勾勒出Promise的大致形状:

class MyPromise {
  // 构造方法接收一个回调
  constructor(executor) {
    this._resolveQueue = []    // then收集的执行成功的回调队列
    this._rejectQueue = []     // then收集的执行失败的回调队列

    // 由于resolve/reject是在executor内部被调用, 因此需要使用箭头函数固定this指向, 否则找不到this._resolveQueue
    let _resolve = (val) => {
      // 从成功队列里取出回调依次执行
      while(this._resolveQueue.length) {
        const callback = this._resolveQueue.shift()
        callback(val)
      }
    }
    // 实现同resolve
    let _reject = (val) => {
      while(this._rejectQueue.length) {
        const callback = this._rejectQueue.shift()
        callback(val)
      }
    }
    // new Promise()时立即执行executor,并传入resolve和reject
    executor(_resolve, _reject)
  }

  // then方法,接收一个成功的回调和一个失败的回调,并push进对应队列
  then(resolveFn, rejectFn) {
    this._resolveQueue.push(resolveFn)
    this._rejectQueue.push(rejectFn)
  }
}

写完代码我们可以测试一下:

const p1 = new MyPromise((resolve, reject) => {
  setTimeout(() => {
    resolve('result')
  }, 1000);
})
p1.then(res => console.log(res))
//一秒后输出result

我们运用观察者模式简单的实现了一下then和resolve,使我们能够在then方法的回调里取得异步操作的返回值,但我们这个Promise离最终实现还有很长的距离,下面我们来一步步补充这个Promise:

Promise A+规范

上面我们已经简单地实现了一个超低配版Promise,但我们会看到很多文章和我们写的不一样,他们的Promise实现中还引入了各种状态控制,这是由于ES6的Promise实现需要遵循Promise/A+规范,是规范对Promise的状态控制做了要求。Promise/A+的规范比较长,这里只总结两条核心规则:

  • Promise本质是一个状态机,且状态只能为以下三种:Pending(等待态)、Fulfilled(执行态)、Rejected(拒绝态),状态的变更是单向的,只能从Pending -> Fulfilled 或 Pending -> Rejected,状态变更不可逆

  • then方法接收两个可选参数,分别对应状态改变时触发的回调。then方法返回一个promise。then 方法可以被同一个 promise 调用多次。

根据规范,我们补充一下Promise的代码:

//Promise/A+规范的三种状态
const PENDING = 'pending'
const FULFILLED = 'fulfilled'
const REJECTED = 'rejected'

class MyPromise {
  // 构造方法接收一个回调
  constructor(executor) {
    this._status = PENDING     // Promise状态
    this._resolveQueue = []    // 成功队列, resolve时触发
    this._rejectQueue = []     // 失败队列, reject时触发

    // 由于resolve/reject是在executor内部被调用, 因此需要使用箭头函数固定this指向, 否则找不到this._resolveQueue
    let _resolve = (val) => {
      if(this._status !== PENDING) return   // 对应规范中的"状态只能由pending到fulfilled或rejected"
      this._status = FULFILLED              // 变更状态

      // 这里之所以使用一个队列来储存回调,是为了实现规范要求的 "then 方法可以被同一个 promise 调用多次"
      // 如果使用一个变量而非队列来储存回调,那么即使多次p1.then()也只会执行一次回调
      while(this._resolveQueue.length) {    
        const callback = this._resolveQueue.shift()
        callback(val)
      }
    }
    // 实现同resolve
    let _reject = (val) => {
      if(this._status !== PENDING) return   // 对应规范中的"状态只能由pending到fulfilled或rejected"
      this._status = REJECTED               // 变更状态
      while(this._rejectQueue.length) {
        const callback = this._rejectQueue.shift()
        callback(val)
      }
    }
    // new Promise()时立即执行executor,并传入resolve和reject
    executor(_resolve, _reject)
  }

  // then方法,接收一个成功的回调和一个失败的回调
  then(resolveFn, rejectFn) {
    this._resolveQueue.push(resolveFn)
    this._rejectQueue.push(rejectFn)
  }
}

then的链式调用

补充完规范,我们接着来实现链式调用,这是Promise实现的重点和难点,我们先来看一下then是如何链式调用的:

const p1 = new Promise((resolve, reject) => {
  resolve(1)
})

p1
  .then(res => {
    console.log(res)
    //then回调中可以return一个Promise
    return new Promise((resolve, reject) => {
      setTimeout(() => {
        resolve(2)
      }, 1000);
    })
  })
  .then(res => {
    console.log(res)
    //then回调中也可以return一个值
    return 3
  })
  .then(res => {
    console.log(res)
  })
  

输出

1
2
3

我们思考一下如何实现这种链式调用:

  • 显然.then()需要返回一个Promise,这样才能找到then方法,所以我们会把then方法的返回值包装成Promise。

  • .then()的回调需要顺序执行,以上面这段代码为例,虽然中间return了一个Promise,但执行顺序仍要保证是1->2->3。我们要等待当前Promise状态变更后,再执行下一个then收集的回调,这就要求我们对then的返回值分类讨论

// then方法
then(resolveFn, rejectFn) {
  //return一个新的promise
  return new MyPromise((resolve, reject) => {
    //把resolveFn重新包装一下,再push进resolve执行队列,这是为了能够获取回调的返回值进行分类讨论
    const fulfilledFn = value => {
      try {
        //执行第一个(当前的)Promise的成功回调,并获取返回值
        let x = resolveFn(value)
        /**
         * 分类讨论返回值,如果是Promise,那么等待Promise状态变更,否则直接resolve
         *
         *     这里是难点,如果 回调函数的返回值 x 是一个promise,则我们需要通过 x.then再
         *  注册一个(两个)回调,目的是为了保证只有当 x 这个promise 的状态改变以后
         * (promise 就绪)才执行后续的回调(即后面 then 注册的回调);如果 x 不是
         *  promise,则直接执行 resolve(x), 比如 resolve(number) 或者 
         *  resolve(undefined)
         *
         *  这里如果读者理解困难,一定要自己敲一遍,执行一遍示例 + console.log打日志,基本
         *  上就能理解了
         */
        x instanceof MyPromise ? x.then(resolve, reject) : resolve(x)
      } catch (error) {
        reject(error)
      }
    }
    //把后续then收集的依赖都push进当前Promise的成功回调队列中(_rejectQueue), 这是为了保证顺序调用,理解这句对于理解 then 的顺序执行以及 _resolve 函数中回调队列的执行很重要
    this._resolveQueue.push(fulfilledFn)

    //reject同理
    const rejectedFn  = error => {
      try {
        let x = rejectFn(error)
        x instanceof MyPromise ? x.then(resolve, reject) : resolve(x)
      } catch (error) {
        reject(error)
      }
    }
    this._rejectQueue.push(rejectedFn)
  })
}

然后我们就能测试一下链式调用:

const p1 = new MyPromise((resolve, reject) => {
  setTimeout(() => {
    resolve(1)
  }, 500);
})

p1
  .then(res => {
    console.log(res)
    return 2
  })
  .then(res => {
    console.log(res)
    return 3
  })
  .then(res => {
    console.log(res)
  })

//输出 1 2 3

值穿透 & 状态已变更的情况

我们已经初步完成了链式调用,但是对于 then() 方法,我们还要两个细节需要处理一下

  • 值穿透

    根据规范,如果 then() 接收的参数不是function,那么我们应该忽略它。如果没有忽略,当then()回调不为function时将会抛出异常,导致链式调用中断

  • 处理状态为resolve/reject的情况

    其实我们上边 then() 的写法是对应状态为pending的情况,但是有些时候,resolve/reject 在 then() 之前就被执行(比如Promise.resolve().then()),如果这个时候还把then()回调push进resolve/reject的执行队列里,那么回调将不会被执行,因此对于状态已经变为fulfilled或rejected的情况,我们直接执行then回调:

// then方法,接收一个成功的回调和一个失败的回调
then(resolveFn, rejectFn) {
  // 根据规范,如果then的参数不是function,则我们需要忽略它, 让链式调用继续往下执行(通过重新定义这两个函数来实现该目的)
  typeof resolveFn !== 'function' ? resolveFn = value => value : null
  typeof rejectFn !== 'function' ? rejectFn = reason => {
    throw new Error(reason instanceof Error? reason.message:reason);
  } : null
  
  // return一个新的promise
  return new MyPromise((resolve, reject) => {
    // 把resolveFn重新包装一下,再push进resolve执行队列,这是为了能够获取回调的返回值进行分类讨论
    const fulfilledFn = value => {
      try {
        // 执行第一个(当前的)Promise的成功回调,并获取返回值
        let x = resolveFn(value)
        // 分类讨论返回值,如果是Promise,那么等待Promise状态变更,否则直接resolve
        x instanceof MyPromise ? x.then(resolve, reject) : resolve(x)
      } catch (error) {
        reject(error)
      }
    }
  
    // reject同理
    const rejectedFn  = error => {
      try {
        let x = rejectFn(error)
        x instanceof MyPromise ? x.then(resolve, reject) : resolve(x)
      } catch (error) {
        reject(error)
      }
    }
  
    switch (this._status) {
      // 当状态为pending时,把then回调push进resolve/reject执行队列,等待执行
      case PENDING:
        this._resolveQueue.push(fulfilledFn)
        this._rejectQueue.push(rejectedFn)
        break;
      // 当状态已经变为resolve/reject时,直接执行then回调
      case FULFILLED:
        fulfilledFn(this._value)    // this._value是上一个then回调return的值(见完整版代码)
        break;
      case REJECTED:
        rejectedFn(this._value)
        break;
    }
  })
}

兼容同步任务

完成了then的链式调用以后,我们再处理一个前边的细节,然后放出完整代码。

上文我们说过,Promise的执行顺序是new Promise -> then()收集回调 -> resolve/reject执行回调,这一顺序是建立在executor是异步任务的前提上的。

如果executor是一个同步任务,那么顺序就会变成new Promise -> resolve/reject执行回调 -> then()收集回调,resolve的执行跑到then之前去了,为了兼容这种情况,我们给resolve/reject执行回调的操作包一个setTimeout,让它异步执行。

提示

这里插一句,有关这个setTimeout,其实还有一番学问。虽然规范没有要求回调应该被放进宏任务队列还是微任务队列,但其实Promise的默认实现是放进了微任务队列,我们的实现(包括大多数Promise手动实现和polyfill的转化)都是使用setTimeout放入了宏任务队列(当然我们也可以用MutationObserver模拟微任务)

//Promise/A+规定的三种状态
const PENDING = 'pending'
const FULFILLED = 'fulfilled'
const REJECTED = 'rejected'

class MyPromise {
  // 构造方法接收一个回调
  constructor(executor) {
    this._status = PENDING     // Promise状态
    this._value = undefined    // 储存then回调return的值
    this._resolveQueue = []    // 成功队列, resolve时触发
    this._rejectQueue = []     // 失败队列, reject时触发

    // 由于resolve/reject是在executor内部被调用, 因此需要使用箭头函数固定this指向, 否则找不到this._resolveQueue
    let _resolve = (val) => {
      //把resolve执行回调的操作封装成一个函数,放进setTimeout里,以兼容executor是同步代码的情况
      const run = () => {
        if(this._status !== PENDING) return   // 对应规范中的"状态只能由pending到fulfilled或rejected"
        this._status = FULFILLED              // 变更状态
        this._value = val                     // 储存当前value

        // 这里之所以使用一个队列来储存回调,是为了实现规范要求的 "then 方法可以被同一个 promise 调用多次"
        // 如果使用一个变量而非队列来储存回调,那么即使多次p1.then()也只会执行一次回调
        while(this._resolveQueue.length) {    
          const callback = this._resolveQueue.shift()
          callback(val)
        }
      }
      setTimeout(run)
    }
    // 实现同resolve
    let _reject = (val) => {
      const run = () => {
        if(this._status !== PENDING) return   // 对应规范中的"状态只能由pending到fulfilled或rejected"
        this._status = REJECTED               // 变更状态
        this._value = val                     // 储存当前value
        while(this._rejectQueue.length) {
          const callback = this._rejectQueue.shift()
          callback(val)
        }
      }
      setTimeout(run)
    }
    // new Promise()时立即执行executor,并传入resolve和reject
    executor(_resolve, _reject)
  }

  // then方法,接收一个成功的回调和一个失败的回调
  then(resolveFn, rejectFn) {
    // 根据规范,如果then的参数不是function,则我们需要忽略它, 让链式调用继续往下执行
    typeof resolveFn !== 'function' ? resolveFn = value => value : null
    typeof rejectFn !== 'function' ? rejectFn = reason => {
      throw new Error(reason instanceof Error? reason.message:reason);
    } : null
  
    // return一个新的promise
    return new MyPromise((resolve, reject) => {
      // 把resolveFn重新包装一下,再push进resolve执行队列,这是为了能够获取回调的返回值进行分类讨论
      const fulfilledFn = value => {
        try {
          // 执行第一个(当前的)Promise的成功回调,并获取返回值
          let x = resolveFn(value)
          // 分类讨论返回值,如果是Promise,那么等待Promise状态变更,否则直接resolve
          x instanceof MyPromise ? x.then(resolve, reject) : resolve(x)
        } catch (error) {
          reject(error)
        }
      }
  
      // reject同理
      const rejectedFn  = error => {
        try {
          let x = rejectFn(error)
          x instanceof MyPromise ? x.then(resolve, reject) : resolve(x)
        } catch (error) {
          reject(error)
        }
      }
  
      switch (this._status) {
        // 当状态为pending时,把then回调push进resolve/reject执行队列,等待执行
        case PENDING:
          this._resolveQueue.push(fulfilledFn)
          this._rejectQueue.push(rejectedFn)
          break;
        // 当状态已经变为resolve/reject时,直接执行then回调
        case FULFILLED:
          fulfilledFn(this._value)    // this._value是上一个then回调return的值(见完整版代码)
          break;
        case REJECTED:
          rejectedFn(this._value)
          break;
      }
    })
  }
}

然后我们可以测试一下这个Promise:

const p1 = new MyPromise((resolve, reject) => {
  resolve(1)          //同步executor测试
})

p1
  .then(res => {
    console.log(res)
    return 2          //链式调用测试
  })
  .then()             //值穿透测试
  .then(res => {
    console.log(res)
    return new MyPromise((resolve, reject) => {
      resolve(3)      //返回Promise测试
    })
  })
  .then(res => {
    console.log(res)
    throw new Error('reject测试')   //reject测试
  })
  .then(() => {}, err => {
    console.log(err)
  })

// 输出 
// 1 
// 2 
// 3 
// Error: reject测试

到这里,我们已经实现了Promise的主要功能(`∀´)Ψ剩下的几个方法都非常简单,我们顺手收拾掉:

  • Promise.prototype.catch()

catch()方法返回一个Promise,并且处理拒绝的情况。它的行为与调用Promise.prototype.then(undefined, onRejected) 相同。

//catch方法其实就是执行一下then的第二个回调
catch (rejectFn) {
  return this.then(undefined, rejectFn)
}

  • Promise.prototype.finally()

finally()方法返回一个Promise。在promise结束时,无论结果是fulfilled或者是rejected,都会执行指定的回调函数。在finally之后,还可以继续then。并且会将值原封不动的传递给后面的then

//finally方法
finally(callback) {
  return this.then(
    // MyPromise.resolve执行回调,并在then中return结果传递给后面的Promise
    value => MyPromise.resolve(callback()).then(() => value),
    // reject同理
    reason => MyPromise.resolve(callback()).then(() => { throw reason })  
  )
}

  • Promise.resolve()

Promise.resolve(value)方法返回一个以给定值解析后的Promise 对象。如果该值为promise,返回这个promise;如果这个值是thenable(即带有"then" 方法)),返回的promise会“跟随”这个thenable的对象,采用它的最终状态;否则返回的promise将以此值完成。此函数将类promise对象的多层嵌套展平。

//静态的resolve方法
static resolve(value) {
  if(value instanceof MyPromise) return value // 根据规范, 如果参数是Promise实例, 直接return这个实例
  return new MyPromise(resolve => resolve(value))
}

  • Promise.reject()

Promise.reject()方法返回一个带有拒绝原因的Promise对象。

//静态的reject方法
static reject(reason) {
  return new MyPromise((resolve, reject) => reject(reason))
}

  • Promise.all()

Promise.all(iterable)方法返回一个 Promise 实例,此实例在 iterable 参数内所有的 promise 都“完成(resolved)”或参数中不包含 promise 时回调完成(resolve);如果参数中  promise 有一个失败(rejected),此实例回调失败(reject),失败原因的是第一个失败 promise 的结果。

//静态的all方法
static all(promiseArr) {
  let index = 0
  let result = []
  return new MyPromise((resolve, reject) => {
    promiseArr.forEach((p, i) => {
      //Promise.resolve(p)用于处理传入值不为Promise的情况
      MyPromise.resolve(p).then(
        val => {
          index++
          result[i] = val
          //所有then执行后, resolve结果
          if(index === promiseArr.length) {
            resolve(result)
          }
        },
        err => {
          //有一个Promise被reject时,MyPromise的状态变为reject
          reject(err)
        }
      )
    })
  })
}

  • Promise.race()

Promise.race(iterable)方法返回一个 promise,一旦迭代器中的某个promise解决或拒绝,返回的 promise就会解决或拒绝。

static race(promiseArr) {
  return new MyPromise((resolve, reject) => {
    //同时执行Promise,如果有一个Promise的状态发生改变,就变更新MyPromise的状态
    for (let p of promiseArr) {
      MyPromise.resolve(p).then(  //Promise.resolve(p)用于处理传入值不为Promise的情况
        value => {
          resolve(value)        //注意这个resolve是上边new MyPromise的
        },
        err => {
          reject(err)
        }
      )
    }
  })
}

  • 完整代码
//Promise/A+规定的三种状态
const PENDING = 'pending'
const FULFILLED = 'fulfilled'
const REJECTED = 'rejected'

class MyPromise {
  // 构造方法接收一个回调
  constructor(executor) {
    this._status = PENDING     // Promise状态
    this._value = undefined    // 储存then回调return的值
    this._resolveQueue = []    // 成功队列, resolve时触发
    this._rejectQueue = []     // 失败队列, reject时触发

    // 由于resolve/reject是在executor内部被调用, 因此需要使用箭头函数固定this指向, 否则找不到this._resolveQueue
    let _resolve = (val) => {
      //把resolve执行回调的操作封装成一个函数,放进setTimeout里,以兼容executor是同步代码的情况
      const run = () => {
        if(this._status !== PENDING) return   // 对应规范中的"状态只能由pending到fulfilled或rejected"
        this._status = FULFILLED              // 变更状态
        this._value = val                     // 储存当前value

        // 这里之所以使用一个队列来储存回调,是为了实现规范要求的 "then 方法可以被同一个 promise 调用多次"
        // 如果使用一个变量而非队列来储存回调,那么即使多次p1.then()也只会执行一次回调
        while(this._resolveQueue.length) {    
          const callback = this._resolveQueue.shift()
          callback(val)
        }
      }
      setTimeout(run)
    }
    // 实现同resolve
    let _reject = (val) => {
      const run = () => {
        if(this._status !== PENDING) return   // 对应规范中的"状态只能由pending到fulfilled或rejected"
        this._status = REJECTED               // 变更状态
        this._value = val                     // 储存当前value
        while(this._rejectQueue.length) {
          const callback = this._rejectQueue.shift()
          callback(val)
        }
      }
      setTimeout(run)
    }
    // new Promise()时立即执行executor,并传入resolve和reject
    executor(_resolve, _reject)
  }

  // then方法,接收一个成功的回调和一个失败的回调
  then(resolveFn, rejectFn) {
    // 根据规范,如果then的参数不是function,则我们需要忽略它, 让链式调用继续往下执行
    typeof resolveFn !== 'function' ? resolveFn = value => value : null
    typeof rejectFn !== 'function' ? rejectFn = reason => {
      throw new Error(reason instanceof Error? reason.message:reason);
    } : null
  
    // return一个新的promise
    return new MyPromise((resolve, reject) => {
      // 把resolveFn重新包装一下,再push进resolve执行队列,这是为了能够获取回调的返回值进行分类讨论
      const fulfilledFn = value => {
        try {
          // 执行第一个(当前的)Promise的成功回调,并获取返回值
          let x = resolveFn(value)
          // 分类讨论返回值,如果是Promise,那么等待Promise状态变更,否则直接resolve
          x instanceof MyPromise ? x.then(resolve, reject) : resolve(x)
        } catch (error) {
          reject(error)
        }
      }
  
      // reject同理
      const rejectedFn  = error => {
        try {
          let x = rejectFn(error)
          x instanceof MyPromise ? x.then(resolve, reject) : resolve(x)
        } catch (error) {
          reject(error)
        }
      }
  
      switch (this._status) {
        // 当状态为pending时,把then回调push进resolve/reject执行队列,等待执行
        case PENDING:
          this._resolveQueue.push(fulfilledFn)
          this._rejectQueue.push(rejectedFn)
          break;
        // 当状态已经变为resolve/reject时,直接执行then回调
        case FULFILLED:
          fulfilledFn(this._value)    // this._value是上一个then回调return的值(见完整版代码)
          break;
        case REJECTED:
          rejectedFn(this._value)
          break;
      }
    })
  }

  //catch方法其实就是执行一下then的第二个回调
  catch(rejectFn) {
    return this.then(undefined, rejectFn)
  }

  //finally方法
  finally(callback) {
    return this.then(
      value => MyPromise.resolve(callback()).then(() => value),             //执行回调,并returnvalue传递给后面的then
      reason => MyPromise.resolve(callback()).then(() => { throw reason })  //reject同理
    )
  }

  //静态的resolve方法
  static resolve(value) {
    if(value instanceof MyPromise) return value //根据规范, 如果参数是Promise实例, 直接return这个实例
    return new MyPromise(resolve => resolve(value))
  }

  //静态的reject方法
  static reject(reason) {
    return new MyPromise((resolve, reject) => reject(reason))
  }

  //静态的all方法
  static all(promiseArr) {
    let index = 0
    let result = []
    return new MyPromise((resolve, reject) => {
      promiseArr.forEach((p, i) => {
        //Promise.resolve(p)用于处理传入值不为Promise的情况
        MyPromise.resolve(p).then(
          val => {
            index++
            result[i] = val
            if(index === promiseArr.length) {
              resolve(result)
            }
          },
          err => {
            reject(err)
          }
        )
      })
    })
  }

  //静态的race方法
  static race(promiseArr) {
    return new MyPromise((resolve, reject) => {
      //同时执行Promise,如果有一个Promise的状态发生改变,就变更新MyPromise的状态
      for (let p of promiseArr) {
        MyPromise.resolve(p).then(  //Promise.resolve(p)用于处理传入值不为Promise的情况
          value => {
            resolve(value)        //注意这个resolve是上边new MyPromise的
          },
          err => {
            reject(err)
          }
        )
      }
    })
  }
}

结尾

我们从一个最简单的Promise使用实例开始,通过对调用流程的分析,根据观察者模式实现了Promise的大致骨架,然后依据Promise/A+规范填充代码,重点实现了then 的链式调用,最后完成了Promise的静态/实例方法。

其实Promise实现在整体上并没有太复杂的思想,但我们日常使用的时候往往忽略了很多Promise细节,因而很难写出一个符合规范的Promise实现,源码的实现过程,其实也是对Promise使用细节重新学习的过程。

本作品系 转载(阅读原文