阅读 27370

这个前端竟然用动态规划写瀑布流布局?给我打死他!

前言

瀑布流布局是前端领域中一个很常见的需求,由于图片的高度是不一致的,所以在多列布局中默认布局下很难获得满意的排列。

我们的需求是,图片高度不规律的情况下,在两列布局中,让左右两侧的图片总高度尽可能的接近,这样的布局会非常的美观。

注意,本文的目的仅仅是讨论算法在前端中能如何运用,而不是说瀑布流的最佳解法是动态规划,可以仅仅当做学习拓展来看。

本文的图片节选自知乎问题《有个漂亮女朋友是种怎样的体验?》,我先去看美女了,本文到此结束。(逃

预览

分析

从预览图中可以看出,虽然图片的高度是不定的,但是到了这个布局的最底部,左右两张图片是正好对齐的,这就是一个比较美观的布局了。

那么怎么实现这个需求呢?从头开始拆解,现在我们能拿到一组图片数组 [img1, img2, img3],我们可以通过一些方法得到它对应的高度 [1000, 2000, 3000],那么现在我们的目标就是能够计算出左右两列 left: [1000, 2000]right: [3000] 这样就可以把一个左右等高的布局给渲染出来了。

准备工作

首先准备好小姐姐数组 SISTERS

let SISTERS = [
  'https://pic3.zhimg.com/v2-89735fee10045d51693f1f74369aaa46_r.jpg',
  'https://pic1.zhimg.com/v2-ca51a8ce18f507b2502c4d495a217fa0_r.jpg',
  'https://pic1.zhimg.com/v2-c90799771ed8469608f326698113e34c_r.jpg',
  'https://pic1.zhimg.com/v2-8d3dd83f3a419964687a028de653f8d8_r.jpg',
  ... more 50 items
]
复制代码

准备好一个工具方法 loadImages,这个方法的目的就是把所有图片预加载以后获取对应的高度,放到一个数组里返回。并且要对外通知所有图片处理完成的时机,有点类似于 Promise.all 的思路。

这个方法里,我们把图片按照 宽高比 和屏幕宽度的一半进行相乘,得到缩放后适配屏宽的图片高度。

let loadImgHeights = (imgs) => {
  return new Promise((resolve, reject) => {
    const length = imgs.length
    const heights = []
    let count = 0
    const load = (index) => {
      let img = new Image()
      const checkIfFinished = () => {
        count++
        if (count === length) {
          resolve(heights)
        }
      }
      img.onload = () => {
        const ratio = img.height / img.width
        const halfHeight = ratio * halfInnerWidth
        // 高度按屏幕一半的比例来计算
        heights[index] = halfHeight
        checkIfFinished()
      }
      img.onerror = () => {
        heights[index] = 0
        checkIfFinished()
      }
      img.src = imgs[index]
    }
    imgs.forEach((img, index) => load(index))
  })
}
复制代码

有了图片高度以后,我们就开始挑选适合这个需求的算法了。

贪心算法

在人的脑海中最直观的想法是什么样的?在每装一个图片前都对比一下左右数组的高度和,往高度较小的那个数组里去放入下一项。

这就是贪心算法,我们来简单实现下:

let greedy = (heights) => {
  let leftHeight = 0
  let rightHeight = 0
  let left = []
  let right = []

  heights.forEach((height, index) => {
    if (leftHeight >= rightHeight) {
      right.push(index)
      rightHeight += height
    } else {
      left.push(index)
      leftHeight += height
    }
  })

  return { left, right }
}
复制代码

我们得到了 leftright 数组,对应左右两列渲染图片的下标,并且我们也有了每个图片的高度,那么渲染到页面上就很简单了:

<div class="wrap" v-if="imgsLoaded">
  <div class="half">
    <img
      class="img"
      v-for="leftIndex in leftImgIndexes"
      :src="imgs[leftIndex]"
      :style="{ width: '100%', height: imgHeights[leftIndex] + 'px' }"
    />
  </div>
  <div class="half">
    <img
      class="img"
      v-for="rightIndex in rightImgIndexes"
      :src="imgs[rightIndex]"
      :style="{ width: '100%', height: imgHeights[rightIndex] + 'px' }"
    />
  </div>
</div>
复制代码

效果如图:

预览地址: sl1673495.github.io/dp-waterfal…

可以看出,贪心算法只寻求局部最优解(只在考虑当前图片的时候找到一个最优解),所以最后左右两边的高度差还是相对较大的,局部最优解很难成为全局最优解。

再回到文章开头的图片去看看,对于同样的一个图片数组,那个预览图里的高度差非常的小,是怎么做到的呢?

动态规划

和局部最优解对应的是全局最优解,而说到全局最优解,我们很难不想到动态规划这种算法。它是求全局最优解的一个利器。

如果你还没有了解过动态规划,建议你看一下海蓝大佬的 一文搞懂动态规划,也是这篇文章让我入门了最基础的动态规划。

动态规划中有一个很著名的问题:「01 背包问题」,题目的意思是这样的:

有 n 个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?

关于 01 背包问题的题解,网上不错的教程似乎不多,我推荐看慕课网 bobo 老师的玩转算法面试 从真题到思维全面提升算法思维 中的第九章,会很仔细的讲解背包问题,对于算法思维有很大的提升,这门课的其他部分也非常非常的优秀。

我也有在我自己维护的题解仓库中对老师的 01 背包解法做了一个js 版的改写

那么 01 背包问题和这个瀑布流算法有什么关系呢?这个思路确实比较难找,但是我们仔细想一下,假设我们有 [1, 2, 3] 这 3 个图片高度的数组,我们怎么通过转化成 01 背包问题呢?

由于我们要凑到的是图片总高度的一半,也就是 (1 + 2 + 3) / 2 = 3,那么我们此时就有了一个 容量为3 的背包,而由于我们装进左列中的图片高度需要低于总高度的一半,待装进背包的物体的总重量和高度是相同的 [1, 2, 3]

那么这个问题也就转化为了,在 容量为3的背包 中,尽可能的从重量为 [1, 2, 3],并且价值也为 [1, 2, 3] 的物品中,尽可能的挑选出总价值最大的物品集合装进背包中。

也就是 总高度为3,在 [1, 2, 3] 这几种高度的图片中,尽可能挑出 总和最大,但是又小于3 的图片集合,装进数组中。

可以分析出 状态转移方程

dp[heights][height] = max(
  // 选择当前图片放入列中
  currentHeight + dp[heights - 1][height - currnetHeight], 
  // 不选择当前图片
  dp[heights - 1][height]
)
复制代码

注意这里的纵坐标命名为 heights,代表它的意义是「可选择图片的集合」,比如 dp[0] 意味着只考虑第一张图片,dp[1] 则意味着既考虑第一张图片又考虑第二张图片,以此类推。

二维数组结构

我们构建的二维 dp 数组

纵坐标 y 是:当前可以考虑的图片,比如 dp[0] 是只考虑下标为 0 的图片,dp[1] 是考虑下标为 0 的图片,并且考虑下标为 1 的图片,以此类推,取值范围是 0 ~ 图片数组的长度 - 1

横坐标 x 是:用当前考虑的图片集合,去尽可能凑到总高度为 y 时,所能凑成的最大高度 max,以及当前所使用的图片下标集合 indexes,取值范围是 0 ~ 高度的一半

小问题拆解

就以 [1, 4, 5, 4] 这四张图片高度为例,高度的一半是 7,用肉眼可以看出最接近 7 的子数组是[1, 5],我们来看看动态规划是怎么求出这个结果的。

我们先看纵坐标为 0,也就是只考虑图片 1 的情况:

  1. 首先去尝试凑高度 1:我们知道图片 1 的高度正好是 1,所以此时dp[0][0]所填写的值是 { max: 1, indexes: [0] },也就代表用总高度还剩 1,并且只考虑图片 1 的情况下,我们的最优解是选用第一张图片。

  2. 凑高度2 ~ 7:由于当前只有 1 可以选择,所以最优解只能是选择第一张图片,它们都是 { max: 1, indexes: [0] }

高度       1  2  3  4  5  6  7
图片1(h=1) 1  1  1  1  1  1  1
复制代码

这一层在动态规划中叫做基础状态,它是最小的子问题,它不像后面的纵坐标中要考虑多张图片,而是只考虑单张图片,所以一般来说都会在一层循环中单独把它求解出来。

这里我们还要考虑第一张图片的高度大于我们要求的总高度的情况,这种情况下需要把 max 置为 0,选择的图片项也为空。

let mid = Math.round(sum(heights) / 2)
let dp = []
// 基础状态 只考虑第一个图片的情况
dp[0] = []
for (let cap = 0; cap <= mid; cap++) {
  dp[0][cap] =
    heights[0] > cap
      ? { max: 0, indexes: [] }
      : { max: heights[0], indexes: [0] }
}
复制代码

有了第一层的基础状态后,我们就可以开始考虑多张图片的情况了,现在来到了纵坐标为 1,也就是考虑图片 1 和考虑图片 2 时求最优解:

高度       1  2  3  4  5  6  7
图片1(h=1) 1  1  1  1  1  1  1
图片2(h=2)
复制代码

此时问题就变的有些复杂了,在多张图片的情况下,我们可以有两种选择:

  1. 选择当前图片,那么假设当前要凑的总高度为 3,当前图片的高度为 2,剩余的高度就为 1,此时我们可以用剩余的高度去「上一个纵坐标」里寻找「只考虑前面几种图片」的情况下,高度为 1 时的最优解。并且记录 当前图片的高度 + 前几种图片凑剩余高度的最优解max1
  2. 不选择当前图片,那么就直接去「只考虑前面几种图片」的上一个纵坐标里,找到当前高度下的最优解即可,记为 max2
  3. 比较 max1max2,找出更大的那个值,记录为当前状态下的最优解。

有了这个前置知识,来继续分解这个问题,在纵坐标为 1 的情况下,我们手上可以选择的图片有图片 1 和图片 2:

  1. 凑高度 1:由于图片 2 的高度为 2,相当于是容量超了,所以这种情况下不选择图片 2,而是直接选择图片 1,所以 dp[1][0] 可以直接沿用 dp[0][0]的最优解,也就是 { max: 1, indexes: [0] }
  2. 凑高度 2:
    1. 选择图片 2,图片 2 的高度为 4,能够凑成的高度为 4,已经超出了当前要凑的高度 2,所以不能选则图片 2。
    2. 不选择图片 2,在只考虑图片 1 时的最优解数组 dp[0] 中找到高度为 2 时的最优解: dp[0][2],直接沿用下来,也就是 { max: 1, indexes: [0] }
    3. 这种情况下只能不选择图片 2,而沿用只选择图片 1 时的解, { max: 1, indexes: [0] }
  3. 省略凑高度 3 ~ 4 的情况,因为得出的结果和凑高度 2 是一样的。
  4. 凑高度 5:高度为 5 的情况下就比较有意思了:
    1. 选择图片 2,图片 2 的高度为 4,能够凑成的高度为 4,此时剩余高度是 1,再去只考虑图片 1 的最优解数组 dp[0]中找高度为 1 时的最优解dp[0][1],发现结果是 { max: 1, indexes: [0] },这两个高度值 4 和 1 相加后没有超出高度的限制,所以得出最优解:{ max: 5, indexes: [0, 1] }
    2. 不选择图片 2,在图片 1 的最优解数组中找到高度为 5 时的最优解: dp[0][5],直接沿用下来,也就是 { max: 1, indexes: [0] }
    3. 很明显选择图片 2 的情况下,能凑成的高度更大,所以 dp[1][2] 的最优解选择 { max: 5, indexes: [0, 1] }

仔细理解一下,相信你可以看出动态规划的过程,从最小的子问题 只考虑图片1出发,先求出最优解,然后再用子问题的最优解去推更大的问题 考虑图片1、2考虑图片1、2、3的最优解。

画一下[1,4,5,4]问题的 dp 状态表吧:

可以看到,和我们刚刚推论的结果一致,在考虑图片 1 和图片 2 的情况下,凑高度为 5,也就是dp[1][5]的位置的最优解就是 5。

最右下角的 dp[3][7] 就是考虑所有图片的情况下,凑高度为 7 时的全局最优解

dp[3][7] 的推理过程是这样的:

  1. 用最后一张高度为 4 的图片,加上前三张图片在高度为 7 - 4 = 3 时的最优解也就是 dp[2][3],得到结果 4 + 1 = 5。
  2. 不用最后一张图片,直接取前三张图片在高度为 7 时的最优解,也就是 dp[2][7],得到结果 6。
  3. 对比这两者的值,得到最优解 6。

至此我们就完成了整个动态规划的过程,得到了考虑所有图片的情况下,最大高度为 7 时的最优解:6,所需的两张图片的下标为 [0, 2],对应高度是 15

给出代码:

// 尽可能选出图片中高度最接近图片总高度一半的元素
let dpHalf = (heights) => {
  let mid = Math.round(sum(heights) / 2)
  let dp = []

  // 基础状态 只考虑第一个图片的情况
  dp[0] = []
  for (let cap = 0; cap <= mid; cap++) {
    dp[0][cap] =
      heights[0] > cap
        ? { max: 0, indexes: [] }
        : { max: heights[0], indexes: [0] }
  }

  for (
    let useHeightIndex = 1;
    useHeightIndex < heights.length;
    useHeightIndex++
  ) {
    if (!dp[useHeightIndex]) {
      dp[useHeightIndex] = []
    }
    for (let cap = 0; cap <= mid; cap++) {
      let usePrevHeightDp = dp[useHeightIndex - 1][cap]
      let usePrevHeightMax = usePrevHeightDp.max
      let currentHeight = heights[useHeightIndex]
      // 这里有个小坑 剩余高度一定要转化为整数 否则去dp数组里取到的就是undefined了
      let useThisHeightRestCap = Math.round(cap - heights[useHeightIndex])
      let useThisHeightPrevDp = dp[useHeightIndex - 1][useThisHeightRestCap]
      let useThisHeightMax = useThisHeightPrevDp
        ? currentHeight + useThisHeightPrevDp.max
        : 0

      // 是否把当前图片纳入选择 如果取当前的图片大于不取当前图片的高度
      if (useThisHeightMax > usePrevHeightMax) {
        dp[useHeightIndex][cap] = {
          max: useThisHeightMax,
          indexes: useThisHeightPrevDp.indexes.concat(useHeightIndex),
        }
      } else {
        dp[useHeightIndex][cap] = {
          max: usePrevHeightMax,
          indexes: usePrevHeightDp.indexes,
        }
      }
    }
  }

  return dp[heights.length - 1][mid]
}
复制代码

有了一侧的数组以后,我们只需要在数组中找出另一半,即可渲染到屏幕的两列中:

this.leftImgIndexes = dpHalf(imgHeights).indexes
this.rightImgIndexes = omitByIndexes(this.imgs, this.leftImgIndexes)
复制代码

得出效果:

优化 1

由于纵轴的每一层的最优解都只需要参考上一层节点的最优解,因此可以只保留两行。通过判断除 2 取余来决定“上一行”的位置。此时空间复杂度是 O(n)。

优化 2

由于每次参考值都只需要取上一行和当前位置左边位置的值(因为减去了当前高度后,剩余高度的最优解一定在左边),因此 dp 数组可以只保留一行,把问题转为从右向左求解,并且在求解的过程中不断覆盖当前的值,而不会影响下一次求解。此时空间复杂度是 O(n),但是其实占用的空间进一步缩小了。

并且在这种情况下对于时间复杂度也可以做优化,由于优化后,求当前高度的最优解是倒序遍历的,那么当发现求最优解的高度小于当前所考虑的那个图片的的高度时,说明本次求解不可能考虑当前图片了,此时左边的高度的最优解一定是「上一行的最优解」。

代码地址

预览地址

完整代码地址

总结

算法思想在前端中的应用还是可以见到不少的,本文只是为了演示动态规划在求解最优解问题时的威力,并不代表这种算法适用于生产环境(实际上性能非常差)。

在实际场景中我们可能一定需要最优解,而只是需要左右两侧的高度不要相差的过大就好,那么这种情况下简单的贪心算法完全足够。

在业务工程中,我们需要结合当前的人力资源,项目周期,代码可维护性,性能等各个方面,去选择最适合业务场景的解法,而不一定要去找到那个最优解。

但是算法对于前端来说还是非常重要的,想要写出 bug free 的代码,在复杂的业务场景下也能游刃有余的想出优化复杂度的方法,学习算法是一个非常棒的途径,这也是工程师必备的素养。

推荐

我维护了一个 LeetCode 的题解仓库,这里会按照标签分类记录我平常刷题时遇到的一些比较经典的问题,并且也会经常更新 bobo 老师的力扣算法课程中提到的各个分类的经典算法,把他 C++ 的解法改写成 JavaScript 解法。欢迎关注,我会持续更新。

参考资料

一文搞懂动态规划

玩转算法面试 从真题到思维全面提升算法思维

❤️ 感谢大家

1.如果本文对你有帮助,就点个赞支持下吧,你的「赞」是我创作的动力。

2.关注公众号「前端从进阶到入院」即可加我好友,我拉你进「前端进阶交流群」,大家一起共同交流和进步。