小六六学Netty系列之编解码器和handler的调用机制

632 阅读12分钟

前言

文本已收录至我的GitHub仓库,欢迎Star:github.com/bin39232820…
种一棵树最好的时间是十年前,其次是现在
我知道很多人不玩qq了,但是怀旧一下,欢迎加入六脉神剑Java菜鸟学习群,群聊号码:549684836 鼓励大家在技术的路上写博客

絮叨

为了学习Netty,我们前面铺垫了那么多,NIO Java的零拷贝,UNIX的I/O模型等等。 下面是前面系列的链接

虽然说不至于学会了很多的东西,但是一遍走下来,至少对Netty 有了一点基本的认识,我相信如果你要再去使用它,或者深入它,这些基础肯定是有用的,我们继续加油。

Google Protobuf

编码和解码的基本介绍

  • 编写网络应用程序时,因为数据在网络中传输的都是二进制字节码数据,在发送数据时就需要编码,接收数据时就需要解码

  • codec(编解码器) 的组成部分有两个:decoder(解码器)和 encoder(编码器)。encoder 负责把业务数据转换成字节码数据,decoder 负责把字节码数据转换成业务数据

Netty 本身的编码解码的机制和问题分析

  • Netty 自身提供了一些 codec(编解码器)
  • Netty 提供的编码器
    • StringEncoder,对字符串数据进行编码
    • ObjectEncoder,对 Java 对象进行编码
  • Netty 提供的解码器
    • StringDecoder, 对字符串数据进行解码
    • ObjectDecoder,对 Java 对象进行解码
  • Netty 本身自带的 ObjectDecoder 和 ObjectEncoder 可以用来实现 POJO 对象或各种业务对象的编码和解码,底层使用的仍是 Java 序列化技术 , 而Java 序列化技术本身效率就不高,存在如下问题
    • 无法跨语言
    • 序列化后的体积太大,是二进制编码的 5 倍多。
    • 序列化性能太低 => 引出 新的解决方案 [Google 的 Protobuf]

Java序列化

这个知识点比较重要,所以小六六重新整理了一篇文章给大家哦

Protobuf

Protobuf基本介绍

  • Protobuf 是 Google 发布的开源项目,全称 Google Protocol Buffers,是一种轻便高效的结构化数据存储格式,可以用于结构化数据串行化,或者说序列化。它很适合做数据存储或 RPC[远程过程调用 remote procedure call ] 数据交换格式 。目前很多公司 http+json 转成 tcp+protobuf
  • 参考文档 : developers.google.com/protocol-bu… 语言指南
  • Protobuf 是以 message 的方式来管理数据的 支持跨平台、跨语言,即[客户端和服务器端可以是不同的语言编写的] (支持目前绝大多数语言,例如 C++、C#、Java、python 等)
  • 高性能,高可靠性
  • 使用 protobuf 编译器能自动生成代码,Protobuf 是将类的定义使用.proto 文件进行描述。说明,在idea 中编写 .proto 文件时,会自动提示是否下载 .ptotot 编写插件. 可以让语法高亮。
  • 然后通过 protoc.exe 编译器根据.proto 自动生成.java 文件
  • protobuf 使用示意图

具体使用

小六六这边就不一一举例说明了,毕竟我也是第一次接触嘛,先了解了解,后面用到了就去找案例就好了,稍微说一下

先写一个这样的执行文件

然后通过它的编译器生成你需要的实体

然后再Netty中使用

大概就是这么个流程,其实我们只要知道我们的目的是什么了就好了,我们就是加快序列化的速度嘛

Netty编解码器和handler的调用机制

基本说明

  • netty的组件设计:Netty的主要组件有Channel、EventLoop、ChannelFuture、ChannelHandler、ChannelPipe等

  • ChannelHandler充当了处理入站和出站数据的应用程序逻辑的容器。例如,实现ChannelInboundHandler接口(或ChannelInboundHandlerAdapter),你就可以接收入站事件和数据,这些数据会被业务逻辑处理。当要给客户端发送响应时,也可以从ChannelInboundHandler冲刷数据。业务逻辑通常写在一个或者多个ChannelInboundHandler中。ChannelOutboundHandler原理一样,只不过它是用来处理出站数据的

  • ChannelPipeline提供了ChannelHandler链的容器。以客户端应用程序为例,如果事件的运动方向是从客户端到服务端的,那么我们称这些事件为出站的,即客户端发送给服务端的数据会通过pipeline中的一系列ChannelOutboundHandler,并被这些Handler处理,反之则称为入站的

再讲编码解码器

  • 当Netty发送或者接受一个消息的时候,就将会发生一次数据转换。入站消息会被解码:从字节转换为另一种格式(比如java对象);如果是出站消息,它会被编码成字节。

  • Netty提供一系列实用的编解码器,他们都实现了ChannelInboundHadnler或者ChannelOutboundHandler接口。在这些类中,channelRead方法已经被重写了。以入站为例,对于每个从入站Channel读取的消息,这个方法会被调用。随后,它将调用由解码器所提供的decode()方法进行解码,并将已经解码的字节转发给ChannelPipeline中的下一个ChannelInboundHandler。

解码器-ByteToMessageDecoder

  • 关系继承图

我们可以看到还是继承了ChannelInboundHandler

  • 由于不可能知道远程节点是否会一次性发送一个完整的信息,tcp有可能出现粘包拆包的问题,这个类会对入站数据进行缓冲,直到它准备好被处理.

  • 一个关于ByteToMessageDecoder实例分析

当服务端读取客户端传过来的数据的时候,第一步就是要解码


public class ToIntegerDecoder extends ByteToMessageDecoder {
    @Override
    protected void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) throws Exception {
        if (in.readableBytes() >= 4) {
            out.add(in.readInt());
        }
    }
}

说明: 这个例子,每次入站从ByteBuf中读取4字节,将其解码为一个int,然后将它添加到下一个List中。当没有更多元素可以被添加到该List中时,它的内容将会被发送给下一个ChannelInboundHandler。int在被添加到List中时,会被自动装箱为Integer。在调用readInt()方法前必须验证所输入的ByteBuf是否具有足够的数据

Netty的handler链的调用机制

实例要求:

  • 使用自定义的编码器和解码器来说明Netty的handler 调用机制
  • 客户端发送long -> 服务器
  • 服务端发送long -> 客户端

其实小六六主要想说的还是handler的一个调用链机制,一个双向链表,然后一个个handler去处理 来看看下面这个案例,按照上面的,是从客户端发送数据到服务端,然后服务端返回数据给客户端,所以我们先写客户端

  • MyClient

package com.xiaoliuliu.netty.hander;

import io.netty.bootstrap.Bootstrap;
import io.netty.channel.ChannelFuture;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.nio.NioSocketChannel;

/**
 * @author 小六六
 * @version 1.0
 * @date 2020/9/1 21:20
 */
public class MyClient {

    public static void main(String[] args) throws Exception {

        EventLoopGroup group = new NioEventLoopGroup();

        try {

            Bootstrap bootstrap = new Bootstrap();
            bootstrap.group(group).channel(NioSocketChannel.class)
                    .handler(new MyClientInitializer()); //自定义一个初始化类

            ChannelFuture channelFuture = bootstrap.connect("localhost", 7000).sync();

            channelFuture.channel().closeFuture().sync();

        } finally {
            group.shutdownGracefully();
        }
    }

}
  • MyClientInitializer

package com.xiaoliuliu.netty.hander;

import com.atguigu.netty.inboundhandlerandoutboundhandler.MyByteToLongDecoder2;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.ChannelPipeline;
import io.netty.channel.socket.SocketChannel;

/**
 * @author 小六六
 * @version 1.0
 * @date 2020/9/1 21:20
 */
public class MyClientInitializer extends ChannelInitializer<SocketChannel> {
    @Override
    protected void initChannel(SocketChannel ch) throws Exception {

        ChannelPipeline pipeline = ch.pipeline();

        //加入一个出站的handler 对数据进行一个编码
        pipeline.addLast(new MyLongToByteEncoder());

        //这时一个入站的解码器(入站handler )
        //pipeline.addLast(new MyByteToLongDecoder());
        pipeline.addLast(new MyByteToLongDecoder2());
        //加入一个自定义的handler , 处理业务
        pipeline.addLast(new MyClientHandler());


    }
}

  • MyClientHandler

package com.xiaoliuliu.netty.hander;

import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.SimpleChannelInboundHandler;

/**
 * @author 小六六
 * @version 1.0
 * @date 2020/9/1 21:22
 */
public class MyClientHandler  extends SimpleChannelInboundHandler<Long> {
    @Override
    protected void channelRead0(ChannelHandlerContext ctx, Long msg) throws Exception {

        System.out.println("服务器的ip=" + ctx.channel().remoteAddress());
        System.out.println("收到服务器消息=" + msg);

    }

    //重写channelActive 发送数据

    @Override
    public void channelActive(ChannelHandlerContext ctx) throws Exception {
        System.out.println("MyClientHandler 发送数据");
        //ctx.writeAndFlush(Unpooled.copiedBuffer(""))
        ctx.writeAndFlush(123456L); //发送的是一个long

        //分析
        //1. "abcdabcdabcdabcd" 是 16个字节
        //2. 该处理器的前一个handler 是  MyLongToByteEncoder
        //3. MyLongToByteEncoder 父类  MessageToByteEncoder
        //4. 父类  MessageToByteEncoder
        /*

         public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
        ByteBuf buf = null;
        try {
            if (acceptOutboundMessage(msg)) { //判断当前msg 是不是应该处理的类型,如果是就处理,不是就跳过encode
                @SuppressWarnings("unchecked")
                I cast = (I) msg;
                buf = allocateBuffer(ctx, cast, preferDirect);
                try {
                    encode(ctx, cast, buf);
                } finally {
                    ReferenceCountUtil.release(cast);
                }

                if (buf.isReadable()) {
                    ctx.write(buf, promise);
                } else {
                    buf.release();
                    ctx.write(Unpooled.EMPTY_BUFFER, promise);
                }
                buf = null;
            } else {
                ctx.write(msg, promise);
            }
        }
        4. 因此我们编写 Encoder 是要注意传入的数据类型和处理的数据类型一致
        */
        // ctx.writeAndFlush(Unpooled.copiedBuffer("abcdabcdabcdabcd",CharsetUtil.UTF_8));

    }
}


  • MyLongToByteEncoder

package com.xiaoliuliu.netty.hander;

import io.netty.buffer.ByteBuf;
import io.netty.channel.ChannelHandlerContext;
import io.netty.handler.codec.MessageToByteEncoder;

/**
 * @author 小六六
 * @version 1.0
 * @date 2020/9/1 21:18
 */
public class MyLongToByteEncoder extends MessageToByteEncoder<Long> {
    //编码方法
    @Override
    protected void encode(ChannelHandlerContext ctx, Long msg, ByteBuf out) throws Exception {

        System.out.println("MyLongToByteEncoder encode 被调用");
        System.out.println("msg=" + msg);
        out.writeLong(msg);

    }
}


  • MyByteToLongDecoder2
package com.xiaoliuliu.netty.hander;

import io.netty.buffer.ByteBuf;
import io.netty.channel.ChannelHandlerContext;
import io.netty.handler.codec.ReplayingDecoder;

import java.util.List;

/**
 * @author 小六六
 * @version 1.0
 * @date 2020/9/1 21:36
 */
public class MyByteToLongDecoder2 extends ReplayingDecoder<Void> {
    @Override
    protected void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) throws Exception {

        System.out.println("MyByteToLongDecoder2 被调用");
        //在 ReplayingDecoder 不需要判断数据是否足够读取,内部会进行处理判断
        out.add(in.readLong());


    }
}


  • MyServer

package com.xiaoliuliu.netty.hander;

import com.atguigu.netty.inboundhandlerandoutboundhandler.MyServerInitializer;
import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.ChannelFuture;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.nio.NioServerSocketChannel;

/**
 * @author 小六六
 * @version 1.0
 * @date 2020/9/1 20:50
 */

public class MyServer {
    public static void main(String[] args) throws Exception{

        EventLoopGroup bossGroup = new NioEventLoopGroup(1);
        EventLoopGroup workerGroup = new NioEventLoopGroup();

        try {

            ServerBootstrap serverBootstrap = new ServerBootstrap();
            serverBootstrap.group(bossGroup,workerGroup).channel(NioServerSocketChannel.class).childHandler(new MyServerInitializer()); //自定义一个初始化类


            ChannelFuture channelFuture = serverBootstrap.bind(7000).sync();
            channelFuture.channel().closeFuture().sync();

        }finally {
            bossGroup.shutdownGracefully();
            workerGroup.shutdownGracefully();
        }

    }
}

  • MyServerInitializer
package com.xiaoliuliu.netty.hander;

import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.ChannelPipeline;
import io.netty.channel.socket.SocketChannel;

/**
 * @author 小六六
 * @version 1.0
 * @date 2020/9/1 20:59
 */
public class MyServerInitializer extends ChannelInitializer<SocketChannel> {


    @Override
    protected void initChannel(SocketChannel ch) throws Exception {
        ChannelPipeline pipeline = ch.pipeline();//一会下断点

        //入站的handler进行解码 MyByteToLongDecoder
        pipeline.addLast(new MyByteToLongDecoder());
        //pipeline.addLast(new MyByteToLongDecoder2());
        //出站的handler进行编码
        pipeline.addLast(new MyLongToByteEncoder());
        //自定义的handler 处理业务逻辑
        pipeline.addLast(new MyServerHandler());
        System.out.println("xx");
    }


}


  • MyServerHandler

package com.xiaoliuliu.netty.hander;

import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.SimpleChannelInboundHandler;

/**
 * @author 小六六
 * @version 1.0
 * @date 2020/9/1 21:19
 */
public class MyServerHandler extends SimpleChannelInboundHandler<Long> {
    @Override
    protected void channelRead0(ChannelHandlerContext ctx, Long msg) throws Exception {

        System.out.println("从客户端" + ctx.channel().remoteAddress() + " 读取到long " + msg);

        //给客户端发送一个long
        ctx.writeAndFlush(98765L);
    }

    @Override
    public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
        cause.printStackTrace();
        ctx.close();
    }
}


  • 总结一下

    • 首先就是 我客户端发送数据出去嘛
    • 第二步就是我们把数据准备好了,肯定是要把它转成encoder下
    • 第三步 当然是我们服务端接收到code 然后去decoder下
    • 然后hander传递给下一个处理器,然后收到信息,然后再返回一条数据给客户端

    • 之后肯定是把返回的数据encoder一下 再发送给socket

    • 之后就是客户端收到信息,然后解码

    • 整个流程如下图

TCP 粘包和拆包 及解决方案

TCP 粘包和拆包基本介绍

  • TCP是面向连接的,面向流的,提供高可靠性服务。收发两端(客户端和服务器端)都要有一一成对的socket,因此,发送端为了将多个发给接收端的包,更有效的发给对方,使用了优化方法(Nagle算法),将多次间隔较小且数据量小的数据,合并成一个大的数据块,然后进行封包。这样做虽然提高了效率,但是接收端就难于分辨出完整的数据包了,因为面向流的通信是无消息保护边界的

  • 由于TCP无消息保护边界, 需要在接收端处理消息边界问题,也就是我们所说的粘包、拆包问题, 看一张图

  • TCP粘包、拆包图解

假设客户端分别发送了两个数据包D1和D2给服务端,由于服务端一次读取到字节数是不确定的,故可能存在以下四种情况:

  • 服务端分两次读取到了两个独立的数据包,分别是D1和D2,没有粘包和拆包
  • 服务端一次接受到了两个数据包,D1和D2粘合在一起,称之为TCP粘包
  • 服务端分两次读取到了数据包,第一次读取到了完整的D1包和D2包的部分内容,第二次读取到了D2包的剩余内容,这称之为TCP拆包
  • 服务端分两次读取到了数据包,第一次读取到了D1包的部分内容D1_1,第二次读取到了D1包的剩余部分内容D1_2和完整的D2包。

粘包和半包原理

这得从底层说起。 在操作系统层面来说,我们使用了 TCP 协议。 在Netty的应用层,按照 ByteBuf 为 单位来发送数据,但是到了底层操作系统仍然是按照字节流发送数据,因此,从底层到应用层,需要进行二次拼装。 操作系统底层,是按照字节流的方式读入,到了 Netty 应用层面,需要二次拼装成 ByteBuf。 这就是粘包和半包的根源。

在Netty 层面,拼装成ByteBuf时,就是对底层缓冲的读取,这里就有问题了。 首先,上层应用层每次读取底层缓冲的数据容量是有限制的,当TCP底层缓冲数据包比较大时,将被分成多次读取,造成断包,在应用层来说,就是半包。 其次,如果上层应用层一次读到多个底层缓冲数据包,就是粘包。

如何解决呢?

基本思路是,在接收端,需要根据自定义协议来,来读取底层的数据包,重新组装我们应用层的数据包,这个过程通常在接收端称为拆包。

拆包的原理

拆包基本原理,简单来说:

  • 接收端应用层不断从底层的TCP 缓冲区中读取数据。 -每次读取完,判断一下是否为一个完整的应用层数据包。如果是,上层应用层数据包读取完成。
  • 如果不是,那就保留该数据在应用层缓冲区,然后继续从 TCP 缓冲区中读取,直到得到一个完整的应用层数据包为止。
  • 至此,半包问题得以解决。
  • 如果从TCP底层读到了多个应用层数据包,则将整个应用层缓冲区,拆成一个一个的独立的应用层数据包,返回给调用程序。
  • 至此,粘包问题得以解决。-

结尾

差不多 入门就这些吧,简单的过了下下

日常求赞

好了各位,以上就是这篇文章的全部内容了,能看到这里的人呀,都是真粉

创作不易,各位的支持和认可,就是我创作的最大动力,我们下篇文章见

六脉神剑 | 文 【原创】如果本篇博客有任何错误,请批评指教,不胜感激 !