阅读 26

Docker核心原理

此文章已同步更新至我的个人博客simonting.gitee.io


一、Docker的底层实现

​ Docker容器本质上是宿主机上的进程 ,核心技术包括Linux上的命名空间(namespace)、控制组(cgroups)、UnionFS(联合文件系统)和容器格式(Container format)。Docker通过namespace实现了资源隔离,通过cgoups实现了资源限制,通过写时复制机制实现了高效的文件操作。

​ 容器就是一个与宿主机系统共享内核但与系统中的其他进程资源相隔离的执行环境。Docker通过对namespace、cgroups、capabilities以及文件系统的管理和分配来“隔离”出一个上述执行环境,这就是Docker容器。

二、命名空间namespace

​ 命名空间是 Linux 内核一个强大的特性。每个容器都有自己单独的命名空间,运行在其中的应用都像是在独立的操作系统中运行一样。命名空间保证了容器之间彼此互不影响。

pid命名空间

​ 不同用户的进程就是通过 pid 命名空间隔离开的,且不同命名空间中可以有相同 pid。所有的 LXC 进程在 Docker 中的父进程为Docker进程,每个 LXC 进程具有不同的命名空间。同时由于允许嵌套,因此可以很方便的实现嵌套的 Docker 容器。

net命名空间

​ 有了 pid 命名空间, 每个命名空间中的 pid 能够相互隔离,但是网络端口还是共享 host 的端口。网络隔离是通过 net 命名空间实现的, 每个 net 命名空间有独立的 网络设备, IP 地址, 路由表, /proc/net 目录。这样每个容器的网络就能隔离开来。Docker 默认采用 veth 的方式,将容器中的虚拟网卡同 host 上的一 个Docker 网桥 docker0 连接在一起。

ipc命名空间

​ 容器中进程交互还是采用了 Linux 常见的进程间交互方法(interprocess communication - IPC), 包括信号量、消息队列和共享内存等。然而同 VM 不同的是,容器的进程间交互实际上还是 host 上具有相同 pid 命名空间中的进程间交互,因此需要在 IPC 资源申请时加入命名空间信息,每个 IPC 资源有一个唯一的 32 位 id。

mnt命名空间

​ 类似 chroot,将一个进程放到一个特定的目录执行。mnt 命名空间允许不同命名空间的进程看到的文件结构不同,这样每个命名空间 中的进程所看到的文件目录就被隔离开了。同 chroot 不同,每个命名空间中的容器在 /proc/mounts 的信息只包含所在命名空间的 mount point。

uts命名空间

​ UTS("UNIX Time-sharing System") 命名空间允许每个容器拥有独立的 hostname 和 domain name, 使其在网络上可以被视作一个独立的节点而非 主机上的一个进程。

user命名空间

​ 每个容器可以有不同的用户和组 id, 也就是说可以在容器内用容器内部的用户执行程序而非主机上的用户。

三、控制器cgroups

​ 控制组是 Linux 内核的一个特性,主要用来对共享资源进行隔离、限制、审计等。只有能控制分配到容器的资源,才能避免当多个容器同时运行时的对系统资源的竞争。

四、联合文件系统UnionFS

​ 联合文件系统(UnionFS)是一种分层、轻量级并且高性能的文件系统,它支持对文件系统的 修改作为一次提交来一层层的叠加,同时可以将不同目录挂载到同一个虚拟文件系统下。

​ 联合文件系统是 Docker 镜像的基础。镜像可以通过分层来进行继承,基于基础镜像(没有父 镜像),可以制作各种具体的应用镜像。

​ Docker镜像时采用分层的方式构建的,每个镜像都是由一系列的“镜像层”组成。分层结构时Docker镜像如此轻量的重要原因,当需要修改容器镜像内的某个文件时,只对处于最上方的读写层进行变动,不覆写下层已有文件系统的内容,已有文件在只读层中的原始版本仍然存在,但会被新写层中的新版文件所隐藏。当使用docker commit 提交这个修改过的容器文件系统为一个新的镜像时,保存的内容仅为最上层读写文件系统中被更新过的文件。分层达到了在不同镜像之间共享镜像层的效果。