iOS底层探索:objc_msgSend慢速查找

1,782 阅读4分钟

注:本文旨在记录笔者的学习过程,仅代表笔者个人的理解,如果有表述不准确的地方,欢迎各位指正!因为涉及到的概念来源自网络,所以如有侵权,也望告知!

前言

本文主要是为了探索方法调用在iOS底层的实现。

正文

一、回顾

在上一篇文章——iOS底层探索:objc_msgSend快速查找中,我们讲到了方法的快速查找流程,如果快速查找流程缓存命中,那么方法查找过程就到此结束了,但是如果缓存中没有找到对应的方法,则会跳转到JumpMiss流程中的__objc_msgSend_uncached

二、慢速查找流程探索

1、__objc_msgSend_uncached

	STATIC_ENTRY __objc_msgSend_uncached
	UNWIND __objc_msgSend_uncached, FrameWithNoSaves

	// THIS IS NOT A CALLABLE C FUNCTION
	// Out-of-band p16 is the class to search

	MethodTableLookup
	TailCallFunctionPointer x17

	END_ENTRY __objc_msgSend_uncached

2、MethodTableLookup

.macro MethodTableLookup

	// push frame
	SignLR
	stp	fp, lr, [sp, #-16]!
	mov	fp, sp

	// save parameter registers: x0..x8, q0..q7
	sub	sp, sp, #(10*8 + 8*16)
	stp	q0, q1, [sp, #(0*16)]
	stp	q2, q3, [sp, #(2*16)]
	stp	q4, q5, [sp, #(4*16)]
	stp	q6, q7, [sp, #(6*16)]
	stp	x0, x1, [sp, #(8*16+0*8)]
	stp	x2, x3, [sp, #(8*16+2*8)]
	stp	x4, x5, [sp, #(8*16+4*8)]
	stp	x6, x7, [sp, #(8*16+6*8)]
	str	x8,     [sp, #(8*16+8*8)]

	// lookUpImpOrForward(obj, sel, cls, LOOKUP_INITIALIZE | LOOKUP_RESOLVER)
	// receiver and selector already in x0 and x1
	mov	x2, x16
	mov	x3, #3
	bl	_lookUpImpOrForward

	// IMP in x0
	mov	x17, x0

	// restore registers and return
	ldp	q0, q1, [sp, #(0*16)]
	ldp	q2, q3, [sp, #(2*16)]
	ldp	q4, q5, [sp, #(4*16)]
	ldp	q6, q7, [sp, #(6*16)]
	ldp	x0, x1, [sp, #(8*16+0*8)]
	ldp	x2, x3, [sp, #(8*16+2*8)]
	ldp	x4, x5, [sp, #(8*16+4*8)]
	ldp	x6, x7, [sp, #(8*16+6*8)]
	ldr	x8,     [sp, #(8*16+8*8)]

	mov	sp, fp
	ldp	fp, lr, [sp], #16
	AuthenticateLR

.endmacro

经过1、2两个过程后,就进到慢速查找流程的关键函数IMP lookUpImpOrForward(id inst, SEL sel, Class cls, int behavior);

3、lookUpImpOrForward

IMP lookUpImpOrForward(id inst, SEL sel, Class cls, int behavior)
{
    const IMP forward_imp = (IMP)_objc_msgForward_impcache;
    IMP imp = nil;
    Class curClass;

    runtimeLock.assertUnlocked();

    // Optimistic cache lookup
    if (fastpath(behavior & LOOKUP_CACHE)) {
        imp = cache_getImp(cls, sel);
        if (imp) goto done_nolock;
    }

    // runtimeLock is held during isRealized and isInitialized checking
    // to prevent races against concurrent realization.

    // runtimeLock is held during method search to make
    // method-lookup + cache-fill atomic with respect to method addition.
    // Otherwise, a category could be added but ignored indefinitely because
    // the cache was re-filled with the old value after the cache flush on
    // behalf of the category.

    runtimeLock.lock();

    // We don't want people to be able to craft a binary blob that looks like
    // a class but really isn't one and do a CFI attack.
    //
    // To make these harder we want to make sure this is a class that was
    // either built into the binary or legitimately registered through
    // objc_duplicateClass, objc_initializeClassPair or objc_allocateClassPair.
    //
    // TODO: this check is quite costly during process startup.
    checkIsKnownClass(cls);

    if (slowpath(!cls->isRealized())) {
        cls = realizeClassMaybeSwiftAndLeaveLocked(cls, runtimeLock);
        // runtimeLock may have been dropped but is now locked again
    }

    if (slowpath((behavior & LOOKUP_INITIALIZE) && !cls->isInitialized())) {
        cls = initializeAndLeaveLocked(cls, inst, runtimeLock);
        // runtimeLock may have been dropped but is now locked again

        // If sel == initialize, class_initialize will send +initialize and 
        // then the messenger will send +initialize again after this 
        // procedure finishes. Of course, if this is not being called 
        // from the messenger then it won't happen. 2778172
    }

    runtimeLock.assertLocked();
    curClass = cls;

    // The code used to lookpu the class's cache again right after
    // we take the lock but for the vast majority of the cases
    // evidence shows this is a miss most of the time, hence a time loss.
    //
    // The only codepath calling into this without having performed some
    // kind of cache lookup is class_getInstanceMethod().

    for (unsigned attempts = unreasonableClassCount();;) {
        // curClass method list.
        Method meth = getMethodNoSuper_nolock(curClass, sel);
        if (meth) {
            imp = meth->imp;
            goto done;
        }

        if (slowpath((curClass = curClass->superclass) == nil)) {
            // No implementation found, and method resolver didn't help.
            // Use forwarding.
            imp = forward_imp;
            break;
        }

        // Halt if there is a cycle in the superclass chain.
        if (slowpath(--attempts == 0)) {
            _objc_fatal("Memory corruption in class list.");
        }

        // Superclass cache.
        imp = cache_getImp(curClass, sel); // 有问题???? cache_getImp - lookup - lookUpImpOrForward
        if (slowpath(imp == forward_imp)) {
            // Found a forward:: entry in a superclass.
            // Stop searching, but don't cache yet; call method
            // resolver for this class first.
            break;
        }
        if (fastpath(imp)) {
            // Found the method in a superclass. Cache it in this class.
            goto done;
        }
    }

    // No implementation found. Try method resolver once.

    if (slowpath(behavior & LOOKUP_RESOLVER)) {
        behavior ^= LOOKUP_RESOLVER;
        return resolveMethod_locked(inst, sel, cls, behavior);
    }

 done:
    log_and_fill_cache(cls, imp, sel, inst, curClass);
    runtimeLock.unlock();
 done_nolock:
    if (slowpath((behavior & LOOKUP_NIL) && imp == forward_imp)) {
        return nil;
    }
    return imp;
}

大致过程分析:

a.判断是否是已知的类:checkIsKnownClass(cls);

b.判断类是否实现isRealized(),如果没有,则需要先实现,确定类和元类的继承链:cls = realizeClassMaybeSwiftAndLeaveLocked(cls, runtimeLock);

c.判断类是否初始化isInitialized()如果没有,则初始化

d.for (unsigned attempts = unreasonableClassCount();;)循环遍历继承链:

如果是实例方法,则首先查找当前类的方法列表,如果没有找到则对当前类的父类进行快速查找、慢速查找(当前类->父类->NSObject->nil),以此类推;

如果是类方法,则首先查找当前类的元类的方法列表,如果没有找到则对当前类的父类的元类进行快速查找、慢速查找(当前类的元类->父类的元类->NSObject元类->NSObject->nil),以此类推;

Method meth = getMethodNoSuper_nolock(curClass, sel);内部主要是通过二分查找的方式,对方法列表进行查找:

f.如果慢速查找找到了对应的方法,则会进行缓存操作log_and_fill_cache(cls, imp, sel, inst, curClass);,将方法存储带类的cache_t信息中,方便下次调用时快速查找使用。

g.如果慢速查找未找到了对应的方法,首先会走到动态方法决议,这部分我们下篇文章在进行讲解;

h.如果最终都没有找到方法,那么就会走到IMP forward_imp = (IMP)_objc_msgForward_impcache;这个方法实现中,我们进一步查看,就会发现这个地方就是我们日常会看到的报错信息。